Project description:Petal is not only the target of selection by horticulturalists to enhance the ornamental value of plants but also emerged as a unique model system for plant organogenesis studies. It is known that three major groups of pigments, betalains, carotenoids and anthocyanins, are responsible for the attractive natural display of flower colors. While carotenoids and betalains generally yield yellow or red colors, anthocyanins confer a diverse range of color from orange to red to violet and blue. In this study, we collected 11 species (Erysimum cheiri, Malcolmia maritime, Brassica oleracea, Raphanus sativus, Orychophragmus violaceus, Eruca sativa, Orychophragmus violaceus, Iberis amara, Aubrieta x cultorum, Lobularia maritime, Matthiola incana) belong to different tribe in Brassicaceae family with varied flower color and performed petal transcriptome analysis. de novo transcriptome assembly showed that average length of the contigs varied from 631bp in O. violaceus to 1212bp in Matthiola incana which indicated that the complexity of the genomes are different much. Protein homology between these species and those sequenced species in Brassicaceae family are consistent with the known phylogenetic relationships. However, O. violaceus has closer relationships with Sisymbrium irio than expected Brassica species. Clustering analysis of genes in anthocyanin and carotenoids synthesis pathway indicated that while silence or low expression of CCD4 (Carotenoid Cleavage Dioxygenase 4) leading to the yellow color formation in different species, purple or red color variation might result from different genes expression variation. These results not only provide transcriptome data for petal development study but also provide useful information for Brassica flower improvement for ornamental purpose.