Project description:Recent ChIP experiments indicate that spliceosome assembly and splicing can occur cotranscriptionally in S. cerevisiae. However, only a few genes have been examined, and all have long second exons. To extend these studies, we analyzed intron-containing genes with different second exon lengths, by ChIP as well as by whole-genome tiling arrays (ChIP-CHIP). The data indicate that U1 snRNP recruitment is independent of exon length. Recursive splicing constructs, which uncouple U1 recruitment from transcription, suggest that cotranscriptional U1 recruitment contributes to optimal splicing efficiency. In contrast, U2 snRNP recruitment as well as cotranscriptional splicing is deficient on short second exon-genes. We estimate that approximately 90% of endogenous yeast splicing is post-transcriptional, consistent with an analysis of post-transcriptional snRNP-associated pre-mRNA. Keywords: ChIP-CHIP
Project description:Blood flow is critical for heart valve formation, and cellular mechanosensors are essential to translate flow into transcriptional regulation of development. Here, we identify a role for primary cilia in vivo in the spatial regulation of cushion formation, the first stage of valve development, by regionally controlling endothelial to mesenchymal transition (EndoMT) via modulation of Kruppel-like Factor 4 (Klf4). We find that high shear stress intracardiac regions decrease endocardial ciliation over cushion development, correlating with KLF4 downregulation and EndoMT progression. Mouse embryos constitutively lacking cilia exhibit a blood-flow dependent accumulation of KLF4 in these regions, independent of upstream left-right abnormalities, resulting in impaired cushion cellularization. snRNA-seq revealed that cilia KO endocardium fails to progress to late-EndoMT, retains endothelial markers and has reduced EndoMT/mesenchymal genes that KLF4 antagonizes. Together, these data identify a mechanosensory role for endocardial primary cilia in cushion development through regional regulation of KLF4.