Project description:A functional gene microarray was developed and used to investigate phytoplankton community composition and gene expression in the English Channel. Genes encoding the CO2 fixation enzyme RuBisCO (rbcL) and the nitrate assimilation enzyme nitrate reductase (NR) representing several major groups of phytoplankton were included as oligonucleotide probes on the 'phytoarray'. Five major groups of eukaryotic phytoplankton that possess the Type 1D rbcL gene were detected, both in terms of presence (DNA) and activity (rbcL gene expression). Changes in relative signal intensity among the Type 1D rbcL probes indicated a shift from diatom dominance in the spring bloom to dominance by haptophytes and flagellates later in the summer. Because of the limitations of a smaller database, NR probes detected fewer groups, but due to the greater diversity among known NR sequences, NR probes provided higher phylogenetic resolution than did rbcL probes, and identified two uncultivated diatom phylotypes as the most abundant (DNA) and active (NR gene expression) in field samples. Unidentified chlorophytes and the diatom Phaeodactylum tricornutum were detected at both the DNA and cDNA (gene expression) levels. The reproducibility of the array was evaluated in several ways and future directions for further improvement of probe development and sensitivity are outlined. The phytoarray provides a relatively high resolution, high throughput approach to assessing phytoplankton community composition in marine environments. Keywords: seawater natural assemblages, functional gene expression
Project description:A functional gene microarray was developed and used to investigate phytoplankton community composition and gene expression in the English Channel. Genes encoding the CO2 fixation enzyme RuBisCO (rbcL) and the nitrate assimilation enzyme nitrate reductase (NR) representing several major groups of phytoplankton were included as oligonucleotide probes on the 'phytoarray'. Five major groups of eukaryotic phytoplankton that possess the Type 1D rbcL gene were detected, both in terms of presence (DNA) and activity (rbcL gene expression). Changes in relative signal intensity among the Type 1D rbcL probes indicated a shift from diatom dominance in the spring bloom to dominance by haptophytes and flagellates later in the summer. Because of the limitations of a smaller database, NR probes detected fewer groups, but due to the greater diversity among known NR sequences, NR probes provided higher phylogenetic resolution than did rbcL probes, and identified two uncultivated diatom phylotypes as the most abundant (DNA) and active (NR gene expression) in field samples. Unidentified chlorophytes and the diatom Phaeodactylum tricornutum were detected at both the DNA and cDNA (gene expression) levels. The reproducibility of the array was evaluated in several ways and future directions for further improvement of probe development and sensitivity are outlined. The phytoarray provides a relatively high resolution, high throughput approach to assessing phytoplankton community composition in marine environments. Keywords: seawater natural assemblages, functional gene expression Two functional genes, nitrate reductase and RuBisCO, 4 - 8 replicate features per array
Project description:To identify the molecular components involved in diatom cell division, global transcript level changes were monitored over the silicon-synchronized cell cycle the model diatom Thalassiosira pseudonana.
Project description:Phytoplankton and bacteria form the base of marine ecosystems and their interactions drive global biogeochemical cycles. The effect of bacteria and bacteria-produced compounds on diatoms range from synergistic to pathogenic and can affect the physiology and transcriptional patterns of the interacting diatom. Here, we investigate physiological and transcriptional changes in the marine diatom Thalassiosira pseudonana induced by extracellular metabolites of a known antagonistic bacterium Croceibacter atlanticus. Mono-cultures of C. atlanticus released compounds that inhibited diatom cell division and elicited a distinctive phenotype of enlarged cells with multiple plastids and nuclei, similar to what was observed when the diatom was co-cultured with the live bacteria. The extracellular C. atlanticus metabolites induced transcriptional changes in diatom pathways that include recognition and signaling pathways, cell cycle regulation, carbohydrate and amino acid production, as well as cell wall stability. Phenotypic analysis showed a disruption in the diatom cell cycle progression and an increase in both intra- and extracellular carbohydrates in diatom cultures after bacterial exudate treatment. The transcriptional changes and corresponding phenotypes suggest that extracellular bacterial metabolites, produced independently of direct bacterial-diatom interaction, may modulate diatom metabolism in ways that support bacterial growth.