Project description:Bursaphelenchus xylophilus (pinewood nematode, PWN) is a causal agent of pine wilt disease and results in economic and environmental losses in pine forests. The establishment of systemic acquired resistance (SAR) provides positive capacities to control PWN. We selected two SAR elicitors, acibenzolar-S-methyl (ASM) and methyl salicylic acid (MeSA), which effectively inhibited disease symptoms on PWN-infected pine trees. To understand dynamic interactions between pine host and PWN under SAR state, we characterized in vivo transcriptomes of pine trees infected by B. xylophilus according to the ASM and MeSA treatment. After distilled water treatment, pine trees infected by B. xylophilus was used as a negative control.
Project description:Bursaphelenchus xylophilus (pinewood nematode, PWN) is the causal agent of pine wilt disease, causing economic and environmental losses in pine forests. The establishment of systemic acquired resistance (SAR) offers positive prospects for PWN control. We chose Bacillus subtilis JCK-1398, which effectively mitigated disease symptoms in PWN-infected pine trees. To elucidate the molecular responses involved in increased SAR according to B. subtilis JCK-1398 treatment, we characterized the in vivo transcriptomes of pine trees infected by PWN with B. subtilis JCK-1398 treatment. Additionally, pine trees infected by PWN after Tween20 treatment were used as a negative control.
Project description:Bursaphelenchus xylophilus is known as the causative agent of pine wilt disease with complex life cycles. In this research, newly published Bursaphelenchus xylophilus genome data were employed to annotate its miRNAs based on deep sequencing technologies. Four small RNA libraries derived from different infection stages of pine wilt disease were constructed and sequenced. Consequently, we obtained hundreds of evolutionarily conserved miRNAs as well as novel miRNA candidates. The analysis of miRNA expression patterns showed that most miRNAs were expressed at extraordinarily high levels during the middle stage of pine wilt disease. Subsequent stem-loop RT-PCR experiments were carried out to validate our results. Functional analysis proved that expression levels of miR-73 and miR-239 were mutually exclusive with their target GH45 cellulase genes., genes known to be responsible for the degradation of the pine cell walls. In addition, another set of atypical miRNAs, termed mirtrons, were identified from B. xylophilus introns. This discovery has expanded the current knowledgebase of such splicing-derived miRNAs into B. xylophilus. Thus, our research has provided detailed characterization of B. xylophilus miRNAs expression patterns during the pathological process of pine wilt disease. The findings will contribute to more in-depth understanding of this devastating plant disease.