Project description:The intra sub-species diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in UF-cheese model. Six strains were isolated from various sources, but all are exhibiting a dairy phenotype. Our results showed that, the six strains exhibited small phenotypic differences since similar behaviour in terms of growth was obtained during cheese ripening while only different acidification capability was detected. Even if all strains displayed high genomic similarities, sharing a high core genome of almost two thousands genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences. This strains with the same dairy origin.
Project description:RNA-seq was used in combination with various analytical chemistry approaches to identify the chemical and genetic basis of pigment production of the bacterium Glutamicibacter arilaitensis when growing on cheese. This bacterium commonly found in cheese rinds where it co-occurs with Penicillium species and other molds. Pinkish-red pigments are produced by the bacterium in response to growth with Penicillium. Both chemical analyses and RNA-seq point to coproporphyrin III as the major metabolite leading to pigment formation.
Project description:Aside from their amino acid content, dairy proteins are valuable for their ability to carry encrypted bioactive peptides whose activities are latent until released by digestive enzymes or endogenous enzymes within the food. Peptides can possess a wide variety of functionalities, such as antibacterial, antihypertensive, and antioxidative properties, as demonstrated by in vitro and in vivo studies. This phenomenon raises the question as to what impact various traditional cheese-making processes have on the formation of bioactive peptides in the resulting products. In this study, we have profiled the naturally-occurring peptides in two hard and two soft traditional cheeses and have identified their known bioactive sequences. While past studies have typically identified fewer than 100 peptide sequences in a single cheese, we have used modern instrumentation to identify between 2900 and 4700 sequences per cheese, an increase by a factor of about 50. We demonstrated substantial variations in proteolysis and peptide formation between the interior and rind of each cheese, which we ascribed to the differences in microbial composition between these regions. We identified a total of 111 bioactive sequences among the four cheeses, with the greatest number of sequences, 89, originating from Mimolette. The most common bioactivities identified were antimicrobial and inhibition of the angiotensin-converting enzyme. This work revealed that cheese proteolysis and the resulting peptidomes are more complex than originally thought in terms of the number of peptides released, variation in peptidome across sites within a single cheese, and variation in bioactive peptides among cheese-making techniques.
Project description:In cheese production, microorganisms are usually added at the beginning of the process as primary starters to drive curd acidification, while secondary microorganisms, with other pro-technological features important for cheese ripening, are added as selected cultures. This research aimed to investigate the possibilities of influencing and selecting the raw milk microbiota using artisanal traditional methods, providing a simple method to produce a natural supplementary culture. We investigated the production of an enriched raw milk whey culture (eRWC), a natural adjunct microbial culture produced from mixing an enriched raw milk (eRM) with a natural whey culture (NWC). The raw milk was enriched by spontaneous fermentation for 21 d at 10°C. Three milk enrichment protocols were tested: heat treatment before incubation, heat treatment plus salt addition, and no treatment. The eRMs were then co-fermented with NWC (ratio of 1:10) at 38°C for 6 h (young eRWC) and 22 h (old eRWC). Microbial diversity during cultures' preparation was evaluated through the determination of colony forming units on selective growth media, and next-generation sequencing (16S rRNA gene amplicon sequencing). The enrichment step increased the streptococci and lactobacilli but reduced microbial richness and diversity of the eRMs. Although the lactic acid bacteria viable count was not significantly different between the eRWCs, they harbored higher microbial richness and diversity than NWC. Natural adjunct cultures were then tested in cheese making trials, following the microbial development, and assessing the chemical quality of the 120 d ripened cheeses. The use of eRWCs slowed the curd acidification in the first hours of cheese making but the pH 24 h after production settled to equal values for all the cheeses. Although the use of diverse eRWCs contributed to having a richer and more diverse microbiota in the early stages of cheese making, their effect decreased over time during ripening, showing an inferior effect to the raw milk microbiota. Even if more research is needed, the optimization of such a tool could be an alternative to the practice of isolating, geno-pheno-typing, and formulating mixed-defined-strain adjunct cultures that require knowledge and facilities not always available for artisanal cheese makers.
Project description:The goal of this project was to use a randomized, cross over design to determine the amino acid blood and muscle response to the acute ingestion of cheddar cheese in comparison to that of bovine milk and to investigate the skeletal muscle mTORC1 response.
Project description:Consumer demand for natural pathogen-control agents for substitution of synthetic food preservatives and traditional antibiotics is increasing. This study aimed to reveal the distribution of lactic acid bacteria (LAB) in raw camel milk and to characterize their antimicrobial traits. The genetic identification by 16S rRNA sequencing of 58 LAB isolates showed the predominance of Enterococcus (24.2%), Lactococcus (22.4%) and Pediococcus (20.7%) genera in raw camel milk. These genera exhibited inhibitory activity against a broad spectrum of Gram-positive and Gram-negative bacteria including multidrug-resistant Salmonella. Among these LAB, two isolates-identified as Pediococcus pentosaceus CM16 and Lactobacillus brevis CM22-were selected for their strong bacteriocinogenic anti-listerial activity estimated at 1600 and 800 AU/mL, respectively. The bacteriocins produced were partially purified by ammonium sulphate precipitation and gel filtration and then biochemically characterized. The proteinaceous nature of bacteriocins was confirmed by the susceptibility to enzymes. These bacteriocins showed significant technological characteristics such as heat-resistance, and stability over a wide range of pH (2.0-10.0). In conclusion, these results indicated that Pediococcus pentosaceus CM16 and Lactobacillus brevis CM22 could be useful as potential probiotics. Moreover, their partially purified bacteriocins may play an important role as food preservatives and feed additives. To our knowledge, this is the first report describing the distribution of LAB population in raw camel milk and the characterization of their bacteriocins from the Arabian Peninsula of western Asia.
Project description:Raw milk cheeses are commonly consumed in France and are also a common source of foodborne outbreaks (FBOs). Both an FBO surveillance system and a laboratory-based surveillance system aim to detect Salmonella outbreaks. In early August 2018, five familial FBOs due to Salmonella spp. were reported to a regional health authority. Investigation identified common exposure to a raw goats' milk cheese, from which Salmonella spp. were also isolated, leading to an international product recall. Three weeks later, on 22 August, a national increase in Salmonella Newport ST118 was detected through laboratory surveillance. Concomitantly isolates from the earlier familial clusters were confirmed as S. Newport ST118. Interviews with a selection of the laboratory-identified cases revealed exposure to the same cheese, including exposure to batches not included in the previous recall, leading to an expansion of the recall. The outbreak affected 153 cases, including six cases in Scotland. S. Newport was detected in the cheese and in the milk of one of the producer's goats. The difference in the two alerts generated by this outbreak highlight the timeliness of the FBO system and the precision of the laboratory-based surveillance system. It is also a reminder of the risks associated with raw milk cheeses.
Project description:Clostridium tyrobutyricum is recognized as the main causative agent of late blowing defect-severe spoilage of hard and semihard cheeses. In this work, we present the draft genome sequences of 12 C. tyrobutyricum strains isolated from raw milk and cheese.