Project description:Bryophytes comprise mosses, liverworts and hornworts. The chromatin landscapes of mosses and liverworts are different, leaving open the question regarding the identity of the chromatin landscape of all bryophytes. To address this question we profiled five chromatin marks using a model hornworts, Anthoceros agrestis.
Project description:Analyses of new genomic, transcriptomic or proteomic data commonly result in trashing many unidentified data escaping the ‘canonical’ DNA-RNA-protein scheme. Testing systematic exchanges of nucleotides over long stretches produces inversed RNA pieces (here named “swinger” RNA) differing from their template DNA. These may explain some trashed data. Here analyses of genomic, transcriptomic and proteomic data of the pathogenic Tropheryma whipplei according to canonical genomic, transcriptomic and translational 'rules' resulted in trashing 58.9% of DNA, 37.7% RNA and about 85% of mass spectra (corresponding to peptides). In the trash, we found numerous DNA/RNA fragments compatible with “swinger” polymerization. Genomic sequences covered by «swinger» DNA and RNA are 3X more frequent than expected by chance and explained 12.4 and 20.8% of the rejected DNA and RNA sequences, respectively. As for peptides, several match with “swinger” RNAs, including some chimera, translated from both regular, and «swinger» transcripts, notably for ribosomal RNAs. Congruence of DNA, RNA and peptides resulting from the same swinging process suggest that systematic nucleotide exchanges increase coding potential, and may add to evolutionary diversification of bacterial populations.
Project description:Bryophytes comprise mosses, liverworts and hornworts. The chromatin landscapes of mosses and liverworts are different, leaving open the question regarding the identity of the chromatin landscape of all bryophytes. To address this question we obtained a genome wide profile of 5-methylated cytosine from a model hornwort, Anthoceros agrestis.
Project description:Here we found Rosa roxburghii fruit extracts effectively increase TERT expression and telomerase activity in cultured human mesenchymal stem cells. Both Rosa roxburghii fruit extracts by freeze drying and spray drying methods increase the activity of telomerase. Rosa roxburghii fruit freeze drying extracts is able to reduce reactive oxygen species levels, enhance SOD activity and resistance to oxidative stress, and reduce DNA damage caused by oxidative stress or radiation. Rosa roxburghii fruit extracts promoted cell proliferation, improved senescent cell morphology, delayed replicative cellular senescence, attenuated cell cycle supressors and alleviated the senescence-associated secretory phenotype. Transcriptome and metabolic profilings found that Rosa roxburghii fruit extract promote cell proliferation and DNA repair pathways, decreased triglycerides as well. Overall, we provided a theoretical basis for the application of Rosa roxburghii fruit as an anti-aging natural product.
Project description:To examine the role of Evi1 in HSC specification, we generated Tie2-Cre::ROSA-Evi1 mice, which can induce Evi1 in endothelial cells. We observed five-fold increase of HSCs In Tie2-Cre::ROSA-Evi1 embryo. To characterize the induced HSCs in Tie2-Cre::ROSA-Evi1 embryos, we analyzed the gene expression profile of HSCs.