Project description:The filamentous diazotrophic cyanobacteria Trichodesmium spp. supply fixed nitrogen (N) to the N-depleted oligotrophic oceans where their growth is often limited by the low availability of phosphorus(P) and/or iron. Previous studies have mostly been focused on the effects of ocean acidification on Trichodesmium under nutrient sufficient or iron-limited conditions. Only a few studies have examined the impacts of ocean acidification on Trichodesmium grown at low P concentrations using non-steady-state batch cultures. Here we cultured Trichodesmium using P-limited continuous cultures (chemostat) to mimic steady-state oceanic low P condition, and used comparative NGS-derived Trichodesmium transcriptome profiling (RNA-seq) analysis to find differentially expressed genes and cellular pathways in response to acidification.
Project description:This study uses 16S rRNA and 16S rRNA gene to investigate variation in the active microbiome across latitudinal scales in the Atlantic Ocean.
Project description:Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate aging associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 old (age>18 years) and 4 young (age 3-6 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in PBMC by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the old animals exhibited higher inflammatory biomarkers in plasma and lower CD4 T cells with altered distribution of naïve and memory T cell maturation subsets. The gut microbiome in old animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of old animals compared to the young. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile.
Project description:We develop a method called open chromatin enrichment and network Hi-C (OCEAN-C) for antibody-independent mapping of global open chromatin interactions. By integrating FAIRE-seq and Hi-C, OCEAN-C detects open chromatin interactions enriched by active cis-regulatory elements. We identify more than 10,000 hubs of open chromatin interactions (HOCIs) in human cells, which are mainly active promoters and enhancers bound by many DNA-binding proteins and form interaction networks crucial for gene transcription. In addition to identifying large-scale topological structures including topologically associated domains and A/B compartments, OCEAN-C can detect HOCI-mediated chromatin interactions that are strongly associated with gene expression, super-enhancers and broad H3K4me3 domains.
Project description:In this research we present a transcriptomics analysis of the physiological response of a marine calcifier, Strongylocentrotus purpuratus, to ocean acidification, a decline in ocean pH that results from the absorption of anthropogenic carbon dioxide (CO2). Larvae were raised from fertilization to prism stage in seawater with elevated CO2 conditions based upon IPCC emissions scenario B1 (540ppm CO2) and A1FI (1020ppm CO2).
2009-08-14 | GSE13777 | GEO
Project description:Tara-oceans samples barcoding and shotgun sequencing
Project description:This project study and comprehensively characterize the lysine acetyltion in the human gut microbiome using antibody-based enrichment strategry and Orbitrap mass spectrometer. The technique has also been applied to study the microbiome in pediatric Crohn's disease and control subjects in order to understand the functional alterations of microbiome in IBD.