Project description:Analysis of urinary bladder in wild-type C57BL/6 females sacrificed every 4 hours at six time points under constant darkness after acclimation for 2 weeks under 12-hour light and 12-hour dark conditions. Results provide insight into circadian gene expression patterns in normal urinary bladder. Analysis of urinary bladder in wild-type C57BL/6 females sacrificed every 4 hours at six time points (n=2 for each time (CT 0, 4, 8, 12 and 20)) under constant darkness after acclimation for 2 weeks under 12-hour light and 12-hour dark conditions.
Project description:Analysis of urinary bladder in wild-type C57BL/6 females sacrificed every 4 hours at six time points under constant darkness after acclimation for 2 weeks under 12-hour light and 12-hour dark conditions. Results provide insight into circadian gene expression patterns in normal urinary bladder.
Project description:The general aim is to provide knowledge of transcriptomic profiles of the developing urinary bladder in order to shed light on gene expression important in the mechanisms behind the developmental defects of bladder exstrophy. Human bladder tissues and gential tissues, as control samples, were surgically removed from terminated fetuses after informed consent and ethical approval. Gene expression data were extracted and analysed after high throughput sequencing of paired-end mRNA libraries (Illumina).
Project description:Urinary bladder wound healing is today pooorly chracterized. MicroRNAs are small non-coding RNA molecules with regulatory functions. In this study we aimed at identifying microRNAs expressed during bladder wound healing. We performed Affymetrix microRNA profiling of the rodent urinary bladder during healing of a surgically created wound.
Project description:At diagnosis approximately 75% of bladder urothelial carcinomas are non muscle invasive bladder cancers (Ta, T1 and Tis), 20% are muscle invasive bladder cancer (T2-T4) and 5% are already metastatic. Non muscle invasive bladder cancers are characterized by tumor recurrence in 60% to 85% of cases and, therefore, long-term followup is needed. The current standard methods to detect and monitor bladder cancer are cystoscopy and cytology. Cystoscopy is an invasive method and cytology is hampered by low sensitivity, especially for low grade tumors. So there is need to develop reliable and noninvasive methods to detect and predict bladder cancer biological behavior. So we have performed high density oligonucleotide microarray for discovery of new molecular markers to diagnose and predict the outcome of bladder cancer. Under an ethical guideline of Chhatrapati Shahuji Maharaj Medical University, India histologically confirmed seven bladder cancer patients were recruited from Department of Urology, Chhatrapati Shahuji Maharaj Medical University, Lucknow, India. Total RNA was extracted from tumor biopsies and hybridized on affymetrix Human Gene ST 1.1 array to determine differentially expressed genes in urinary bladder cancer with muscle invasion in comparison of normal human urinary bladder.
Project description:Notch2 in promotion of bladder cancer growth and metastasis through epithelial to mesenchymal transition (EMT), cell cycle progression and maintenance of stemness. Notch2 induced gene expression in human urinary bladder cancer was measured at three independent experiments.
Project description:The gene activity during human urinary bladder development is largely unknown. Our aim is to provide gene expression data to identify active genes during development and to facilitate future candidate gene identification for bladder malformations. Here, we make the first step to provide RNA-Seq of time-series bladder tissues between week 5 to 10. Fetal lung is used as reference sample.
Project description:We report the application of single-cell based sequencing for high throughput profiling of the mouse urinary bladder. By utilizing multiple dissociation techniques and library preparation techniques we generated an atlas comprising 43,119 cells including major cell types absent from previous reports. We found that previous single-cell profiling of the mouse bladder lacked a major cell type in the detrusor smooth muscle and incorrectly annotated other cell types such as mesothelial cells. Using the atlas, we elucidated aspects of bladder biology including urothelial differentiation, the identity of interstitial cells of Cajal, detrusor smooth muscle control and immune distributions. Finally, we combine the single-cell based sequencing with spatial transcriptomics and imaging mass cytometry to add spatial context to transcriptomic profiling.