Project description:Histone modifications play an integral role in plant development, but have been poorly studied in woody plants. Investigating chromatin organization in wood-forming tissue and its role in regulating gene expression allows us to understand the mechanisms underlying cellular differentiation during xylogenesis (wood formation) and identify novel functional regions in plant genomes. However, woody tissue poses unique challenges for using high-throughput chromatin immunoprecipitation (ChIP) techniques for studying genome-wide histone modifications in vivo. We investigated the role of the modified histone H3K4me3 (trimethylated lysine 4 of histone H3) in gene expression during the early stages of wood formation using ChIP-seq in Eucalyptus grandis, a woody biomass model. Plant chromatin fixation and isolation protocols were optimized for developing xylem tissue collected from field-grown E. grandis trees. A “nano-ChIP-seq” procedure was employed for ChIP DNA amplification. Over 9 million H3K4me3 ChIP-seq and 18 million control paired-end reads were mapped to the E. grandis reference genome for peak-calling using Model-based Analysis of ChIP-Seq. The 12,177 significant H3K4me3 peaks identified covered ~1.5% of the genome and overlapped some 9,623 protein-coding genes and 38 noncoding RNAs. H3K4me3 library coverage, peaking ~600 - 700 bp downstream of the transcription start site, was highly correlated with gene expression levels measured with RNA-seq. Overall, H3K4me3-enriched genes tended to be less tissue-specific than unenriched genes and were overrepresented for general cellular metabolism and development gene ontology terms. Relative expression of H3K4me3-enriched genes in developing secondary xylem was higher than unenriched genes, however, and highly expressed secondary cell wall-related genes were enriched for H3K4me3 as validated using ChIP-qPCR. In this first genome-wide analysis of a modified histone in a woody tissue, we developed optimized a ChIP-seq procedure suitable for field-collected samples. In developing E. grandis xylem, H3K4me3 enrichment is an indicator of active transcription, consistent with its known role in sustaining pre-initiation complex formation in yeast. The H3K4me3 ChIP-seq data from this study paves the way to understanding the chromatin landscape and epigenomic architecture of xylogenesis in plants, and complements RNA-seq evidence of gene expression for the future improvement of the E. grandis genome annotation. Examination of H3K4me3 in developing secondary xylem tissue from two clonal individuals of E. grandis growing in the field
Project description:The study was conducted to identify differentially expressed polyethylene glycol (PEG) induced water stress responsive genes in E. grandis. Forty day old rooted cutting of E. grandis was subjected to -0.225 MPa PEG treatment and total RNA was isolated from leaves of water treated control and PEG treated samples after three hours of treatment. The differential expression of water stress responsive genes was analyzed using microarray technique.
Project description:Histone modifications play an integral role in plant development, but have been poorly studied in woody plants. Investigating chromatin organization in wood-forming tissue and its role in regulating gene expression allows us to understand the mechanisms underlying cellular differentiation during xylogenesis (wood formation) and identify novel functional regions in plant genomes. However, woody tissue poses unique challenges for using high-throughput chromatin immunoprecipitation (ChIP) techniques for studying genome-wide histone modifications in vivo. We investigated the role of the modified histone H3K4me3 (trimethylated lysine 4 of histone H3) in gene expression during the early stages of wood formation using ChIP-seq in Eucalyptus grandis, a woody biomass model. Plant chromatin fixation and isolation protocols were optimized for developing xylem tissue collected from field-grown E. grandis trees. A “nano-ChIP-seq” procedure was employed for ChIP DNA amplification. Over 9 million H3K4me3 ChIP-seq and 18 million control paired-end reads were mapped to the E. grandis reference genome for peak-calling using Model-based Analysis of ChIP-Seq. The 12,177 significant H3K4me3 peaks identified covered ~1.5% of the genome and overlapped some 9,623 protein-coding genes and 38 noncoding RNAs. H3K4me3 library coverage, peaking ~600 - 700 bp downstream of the transcription start site, was highly correlated with gene expression levels measured with RNA-seq. Overall, H3K4me3-enriched genes tended to be less tissue-specific than unenriched genes and were overrepresented for general cellular metabolism and development gene ontology terms. Relative expression of H3K4me3-enriched genes in developing secondary xylem was higher than unenriched genes, however, and highly expressed secondary cell wall-related genes were enriched for H3K4me3 as validated using ChIP-qPCR. In this first genome-wide analysis of a modified histone in a woody tissue, we developed optimized a ChIP-seq procedure suitable for field-collected samples. In developing E. grandis xylem, H3K4me3 enrichment is an indicator of active transcription, consistent with its known role in sustaining pre-initiation complex formation in yeast. The H3K4me3 ChIP-seq data from this study paves the way to understanding the chromatin landscape and epigenomic architecture of xylogenesis in plants, and complements RNA-seq evidence of gene expression for the future improvement of the E. grandis genome annotation.
Project description:Illumina HiSeq technology was used to generate mRNA profiles from in vitro Eucalyptus grandis roots interacting with two different Pisolithus microcarpus strains (SI-9 and SI-12) and under two different CO2 concentrations (400 and 650 ppm) . Control roots or ectomycorrhizal root tips were harvested after 1 month and used for RNA extraction. Paired-end (2X150bp) reads were generated and aligned to Eucalyptus grandis transcripts (http://www.phytozome.net/; primarytranscripts only) using CLC Genomics Workbench 6.
Project description:In order to pinpoint the most differentially expressed genes between Eucalyptus grandis leaf blades and vascular (xylem) tissues as well as between E. grandis and Eucalyptus globulus xylem tissues, a total number of nine 50mer-oligoprobes covering the length of each one of 21,432 unique sequences derived from the Genolyptus EST dataset were synthesized “on-chip” in duplicate, randomly distributed in two blocks of each slide. Probes were also synthesized from ten cDNA sequences encoding known human proteins as negative controls, totaling 21,442 sequences. Leaves and xylem samples were taken from two E. grandis clonal trees, i.e., both derived from the same matrix tree and harboring the same genotype. Two additional xylem samples were collected from two other E. grandis clonal trees of a different genotype, as well as from two E. globulus clonal trees. Therefore, ten cDNA samples and ten identical chips were produced at Roche NimbleGen for the microarray assays, with a total number of 385,956 features per slide. Besides the discovery of differentially expressed genes between leaf and xylem, we wanted to test the validity of the assumed “technical” and “biological duplicates” since all trees were field-grown and four years-old in age.
Project description:Dioecy is an important sexual system wherein, male and female flowers are borne on separate unisexual plants. Knowledge of sex-related differences can enhance our understanding in molecular and developmental processes leading to unisexual flower development. Coccinia grandis is a dioecious species belonging to Cucurbitaceae, a family well-known for diverse sexual systems. Male and female plants of C. grandis have 22A+XY and 22A+XX chromosomes respectively. Previously, we have reported a gynomonoecious form (GyM) (22A+XX) of C. grandis bearing morphologically hermaphrodite flowers (GyM-H) and female flowers (GyM-F). Also, we showed that foliar spray of silver nitrate on female C. grandis plant induces development of morphologically hermaphrodite buds (Ag-H) despite the absence of Y chromosome. To identify sex-related differences, total protein from the flower buds of male, female, GyM-H and Ag-H of C. grandis at early and middle stages of development were analysed by a powerful label-free proteomics approach on ABSCIEX Triple TOF 5600 platform.
Project description:Background: Limited data are available on aluminum (Al)-toxicity-induced alterations of gene profiles in woody plants. Seedlings of Al-tolerant Citrus sinensis and Al-intolerant Citrus grandis were fertigated with nutrient solution containing 0 and 1.0 mM AlCl3â?¢6H2O. Thereafter, we investigated the Al-toxicity-induced alterations of transcriptomics in roots by RNA-Seq. Results: Using RNA-seq, we isolated 1293 (990) up- and 1377 (915) downregulated genes from Al-treated C. grandis (C. sinensis) roots. Clearly, gene expression was less affected by Al-toxicity in C. sinensis roots than in C. grandis ones. Several Al-toxicity-responsive genes homologous to known Al-tolerance genes: Al-activated malate transporter, multidrug and toxic compound extrusion (MATE), IRON REGULATED/ferroportin 1, sensitive to proton rhizotoxicity 1 and monogalactosyldiacylglycerol synthase were identified in citrus roots. However, Al-induced upregulation of all these genes was stronger in C. grandis roots than in C. sinensis ones except for MATEs. Genes related to signal transduction, and sulfur transport and metabolism might also play a role in the higher Al-tolerance of C. sinensis. Conclusions: This is the first comparative investigation of transcriptomic responses in Al-treated citrus roots. There were common and unique mechanisms for citrus Al-tolerance. These results provide a platform for further investigating the roles of genes possibly responsible for citrus Al-tolerance. Examination of mRNA levels in control and Al-treatment roots of C. grandis and C. sinensis with two biological replicates were generated by deep sequencing, using Illumina HiSeq 2000 device.