Project description:Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme’s response (R2, 0.51–0.80, p < 0.01 in all cases). Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide (latitude 62.2°S–16°N, MAT –1.4ºC–29.5ºC) validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility, confirm the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response
Project description:Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, along four sites/elevations of a Tibetan mountainous grassland, aiming to explore potential microbial responses to climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities were distinct for most but not all of the sites. Substantial variations were apparent in stress, N and C cycling genes, but they were in line with the functional roles of these genes. Cold shock genes were more abundant at higher elevations. Also, gdh converting ammonium into urea was more abundant at higher elevations while ureC converting urea into ammonium was less abundant, which was consistent with soil ammonium contents. Significant correlations were observed between N-cycling genes (ureC, gdh and amoA) and nitrous oxide flux, suggesting that they contributed to community metabolism. Lastly, we found by CCA, Mantel tests and the similarity tests that soil pH, temperature, NH4+–N and vegetation diversity accounted for the majority (81.4%) of microbial community variations, suggesting that these four attributes were major factors affecting soil microbial communities. Based on these observations, we predict that climate changes in the Tibetan grasslands are very likely to change soil microbial community functional structure, with particular impacts on microbial N cycling genes and consequently microbe-mediated soil N dynamics.
2013-07-13 | GSE48820 | GEO
Project description:Regional and vertical patterns in microbial communities across Fram Strait (2015-2019)
| PRJEB66267 | ENA
Project description:Rhizosphere microbial communities in different locations