Project description:Anthropogenic pollution has increased the levels of heavy metals in the environment. Bacterial populations continue to thrive in highly polluted environments and bacteria must have mechanisms to counter heavy metal stress. We chose to examine the response of the environmentally-relevant organism Pseudomonas aeruginosa to two different copper treatments. A short, 45 min exposure to copper was done in the Cu shock treatment to examine the immediate transcriptional profile to Cu stress. The Cu adapted treatment was designed to view the transcriptional profile of cells that were actively growing in the presence of Cu. Keywords: stress response
Project description:W evaluated an experimental particle exposure model, including markers of the acute phase system assessed as the hepatic mRNA expression of Sap, the murine homologue of CRP, and Saa1 and Saa3. Keywords: Toxicology, disease state analysis, stress response, nanoparticles, air pollution
2009-04-27 | GSE11346 | GEO
Project description:Anthropogenic pollution gradient along Bialka mountain river
Project description:The marbled crayfish (Procambarus virginalis) is a unique freshwater crayfish characterized by genetic uniformity, phenotypic variability, and substantial invasive potential. As invasion into different habitats occurs in the absence of genetic variation, epigenetic mechanisms have been suggested to mediate phenotypic adaptation. However, epigenetic regulation has not been analyzed in this organism yet. Here we show that the recently published P. virginalis draft genome sequence encodes a conserved DNA methylation system. Whole-genome bisulfite sequencing of multiple replicates and different tissues revealed a methylation pattern that is characterized by gene body methylation of housekeeping genes. Interestingly, this pattern was largely tissue-invariant, suggesting a function that is unrelated to cell-fate specification. Indeed, integrative analysis of RNA-seq datasets showed that gene body methylation correlated with stable gene expression, while unmethylated genes often showed a high degree of inter-individual expression variation. Our findings thus establish the methylome of an emerging model organism and suggest that methylation-dependent regulation of gene expression variability may facilitate the phenotypic adaptation and invasive spread of this animal.
Project description:Functional modifications shape the ability of populations to cope with anthropogenic environmental changes. These modifications are mediated by complex interactions between transmitted and non-transmitted changes which limit their prediction. To study how these changes are intertwined with evolutionary processes in a case of persistent anthropogenic environmental change, we characterized population structure, genetic diversity and individual response on gene expression of the tree frog Hyla orientalis along a gradient of radioactive contamination around the Chernobyl nuclear power plant. We detected lower effective population size in populations most exposed to ionizing radiation that is not compensated by migrations from surrounding areas. We also highlight a decreased body condition of frogs living in the most contaminated area, a peculiar transcriptomics signature and stop-gained mutations in genes involved in energy metabolism. Population most exposed to ionizing radiation in the Chernobyl exclusion zone experience both genetic drift and functional changes that collectively point towards deleterious effects of ionizing radiation on tree frogs and potential difficulty to adapt to this novel environment.
Project description:Anthropogenic pollution has increased the levels of heavy metals in the environment. Bacterial populations continue to thrive in highly polluted environments and bacteria must have mechanisms to counter heavy metal stress. We chose to examine the response of the environmentally-relevant organism Pseudomonas aeruginosa to two different copper treatments. A short, 45 min exposure to copper was done in the Cu shock treatment to examine the immediate transcriptional profile to Cu stress. The Cu adapted treatment was designed to view the transcriptional profile of cells that were actively growing in the presence of Cu. Experiment Overall Design: We analyzed 2 biological replicates of Pseudomonas aeruginosa exposed to a 45 min Cu shock as compared to a control that was exposed to HCl to bring the pH to similar levels. We analyzed 2 biological replicates of Pseudomonas aeruginosa that were grown in the presence of Cu for approx. 6h (Cu adapted) as compared to an untreated control.
Project description:The marbled crayfish (Procambarus virginalis) is a unique freshwater crayfish characterized by genetic uniformity, phenotypic variability, and substantial invasive potential. As invasion into different habitats occurs in the absence of genetic variation, epigenetic mechanisms have been suggested to mediate phenotypic adaptation. However, epigenetic regulation has not been analyzed in this organism yet. Here we show that the recently published P. virginalis draft genome sequence encodes a conserved DNA methylation system. Whole-genome bisulfite sequencing of multiple replicates and different tissues revealed a methylation pattern that is characterized by gene body methylation of housekeeping genes. Interestingly, this pattern was largely tissue-invariant, suggesting a function that is unrelated to cell-fate specification. Indeed, integrative analysis of RNA-seq datasets showed that gene body methylation correlated with stable gene expression, while unmethylated genes often showed a high degree of inter-individual expression variation. Our findings thus establish the methylome of an emerging model organism and suggest that methylation-dependent regulation of gene expression variability may facilitate the phenotypic adaptation and invasive spread of this animal.
Project description:The marbled crayfish (Procambarus virginalis) is a unique freshwater crayfish characterized by genetic uniformity, phenotypic variability, and substantial invasive potential. As invasion into different habitats occurs in the absence of genetic variation, epigenetic mechanisms have been suggested to mediate phenotypic adaptation. However, epigenetic regulation has not been analyzed in this organism yet. Here we show that the recently published P. virginalis draft genome sequence encodes a conserved DNA methylation system. Whole-genome bisulfite sequencing of multiple replicates and different tissues revealed a methylation pattern that is characterized by gene body methylation of housekeeping genes. Interestingly, this pattern was largely tissue-invariant, suggesting a function that is unrelated to cell-fate specification. Indeed, integrative analysis of RNA-seq datasets showed that gene body methylation correlated with stable gene expression, while unmethylated genes often showed a high degree of inter-individual expression variation. Our findings thus establish the methylome of an emerging model organism and suggest that methylation-dependent regulation of gene expression variability may facilitate the phenotypic adaptation and invasive spread of this animal.