Project description:We determined whether we could identify clusters of children with critical asthma by functional immunophenotyping using an intracellular viral analog stimulus. We performed a single-center, prospective, observational cohort study of 43 children ages 6 – 17 years admitted to a pediatric intensive care unit for an asthma attack between July 2019 to February 2021.
2022-06-05 | GSE205151 | GEO
Project description:Intensive care unit microbiome
Project description:We determined whether we could identify clusters of children with critical asthma by plasma cytokine concentration. Differences in gene expression between the two clusters were analyzed using a targeted Nanostring immunology array. We performed a single-center, prospective, observational cohort study of 64 children ages 6 – 17 years admitted to a pediatric intensive care unit for an asthma attack between July 2019 to February 2021.
Project description:Respiratory failure and mortality from COVID-19 result from virus- and inflammation-induced lung tissue damage. The intestinal microbiome and associated metabolites are implicated in immune responses to respiratory viral infections, however their impact on progression of severe COVID-19 remains unclear. We prospectively enrolled 71 patients with COVID-19 associated critical illness, collected fecal specimens within 3 days of medical intensive care unit admission, defined microbiome compositions by shotgun metagenomic sequencing, and quantified microbiota-derived metabolites (NCT 04552834). Of the 71 patients, 39 survived and 32 died. Mortality was associated with increased representation of Proteobacteria in the fecal microbiota and decreased concentrations of fecal secondary bile acids and desaminotyrosine (DAT). A microbiome metabolic profile (MMP) that accounts for fecal secondary bile acids and desaminotyrosine concentrations was independently associated with progression of respiratory failure leading to mechanical ventilation. Our findings demonstrate that fecal microbiota composition and microbiota-derived metabolite concentrations can predict the trajectory of respiratory function and death in patients with severe SARS-Cov-2 infection and suggest that the gut-lung axis plays an important role in the recovery from COVID-19.
2023-05-02 | MTBLS5288 | MetaboLights
Project description:GUT MICROBIOTA IN CARDIO-SURGICAL INTENSIVE CARE PATIENTS
Project description:Circulating miRNAs in patients who underwent ARDS and needed mechanical ventilation were analyzed by next generation sequencing (NGS) in comparison with patients who had COVID-19 poor symptoms but without intensive care unit requirement.
Project description:We assayed leukocyte global gene expression for a prospective discovery cohort of 265 adult patients admitted to UK intensive care units with severe sepsis due to community acquired pneumonia.
Project description:We assayed leukocyte global gene expression for a prospective validation cohort of 106 adult patients admitted to UK intensive care units with severe sepsis due to community acquired pneumonia.
Project description:A prospective study was conducted in the Neonatal Intensive Care Unit of the University Children's hospital between September 1, 2008 and November 30, 2010. The entry criteria were (1) preterm birth below 32 weeks gestational age, (2) birthweight<1500g (VLBW). During the follow-up period, bronchopulmonary dysplasia (BPD) was diagnosed in 68 (61%) infants, including 40 (36%) children with mild disease, 13 (12%) with moderate and 15 (13%) with severe BPD. Forty-three babies served as a control group (no BPD).
Project description:A prospective study was conducted in the Neonatal Intensive Care Unit of the University Children's hospital between September 1, 2008 and November 30, 2010. The entry criteria were (1) preterm birth below 32 weeks gestational age, (2) birthweight<1500g (VLBW). During the follow-up period, bronchopulmonary dysplasia (BPD) was diagnosed in 68 (61%) infants, including 40 (36%) children with mild disease, 13 (12%) with moderate and 15 (13%) with severe BPD. Forty-three babies served as a control group (no BPD). One hundred twenty newborns were included at the start of the study. Three blood samples (0.3 ml) were drawn from all the study participants for microarray assessment of gene expression profiles around the 5th, 14th and 28th days of life. Note that microarrays were not taken for all patients at all time points (A,B,C).