Project description:Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, aiming to explore potential microbial responses to climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities were distinct for most but not all of the sites. Substantial variations were apparent in stress, N and C cycling genes, but they were in line with the functional roles of these genes. sixty-three samples were collected from four elevations (3200,3400,3600 and 3800 m) along a Tibetan alpine meadow; Three replicates in each treatment
Project description:Land cover change has long been recognized that marked effect the amount of soil organic carbon. However, little is known about microbial-mediated effect processes and mechanism on soil organic carbon. In this study, the soil samples in a degenerated succession from alpine meadow to alpine steppe meadow in Qinghai-Tibetan Plateau degenerated, were analyzed by using GeoChip functional gene arrays.
Project description:Using WGBS we investigated blood DNA methylation profiles of Cooinda the Alpine dingo and determined putative regulatory elements (unmethylated regions, UMRs, and lowly methylated regions, LMRs).
Project description:Local breeds retained unique genetic variability important for adaptive potential especially in light of challenges related to climate change. Our objective was to perform, for the first time, a genome-wide diversity characterization using Illumina GoatSNP50 BeadChip of autochthonous Drežnica goat breed from Slovenia. Genetic diversity analyses revealed that the Slovenian Drežnica goat has a distinct genetic identity and is closely related to the neighboring Austrian and Italian alpine breeds. These results expand our knowledge on phylogeny of goat breeds from easternmost part of the European Alps.
Project description:Alpine goat phenotypes for quality components have been routinely recorded for many years and deposited in the Council on Dairy Cattle Breeding (CDCB) repository. The data collected were used to conduct an exploratory genome-wide association study (GWAS) from 72 female Alpine goats originating from locations throughout the U.S. Genotypes were identified with the Illumina Goat 50K single nucleotide polymorphisms (SNP) Beadchip. The analysis used a polygenic model where the dropping criteria was the Call Rate ≥ 0.95. The initial dataset was composed of ~ 60,000 rows of SNPs, 21 columns of phenotypic traits and composed of 53,384 scaffolds containing other informative data points used for genomic predictive power. Phenotypic association with the 50KBeadchip revealed 26,074 reads of candidate genes. These candidate genes segregated as separate novel SNPs and were identified as statistically significant regions for genome and chromosome level trait associations. Candidate genes associated differently for each of the following phenotypic traits: test day milk yield (13,469 candidate genes), test day protein yield (25,690 candidate genes), test day fat yield (25,690 candidate genes), percentage protein (25,690 candidate genes), percentage fat (25,690 candidate genes), and percentage lactose content (25,690 candidate genes). The outcome of this study supports elucidation of novel genes that are important for livestock species in association to key phenotypic traits. Validation towards the development of marker-based selection that provide precision breeding methods will thereby increase breeding value. Specific aims: 1) Improve on contributions to the phenotype repository, the Council on Dairy Cattle Breeding (CDCB) for milk quality traits that are economically important for goat production while developing a corresponding DNA repository for each of the animals with significant genotype-phenotype associations. 2) Develop genomic prediction tools and provide data for a better database for tools to predict phenotypic traits by initially using the high density Goat50KSNP BeadChip for the selection of more specific SNPs associated with select signatures (genes) for phenotypic traits in American Alpine goats. 3) To establish whether a low number of goat subjects (< 300 goats) will provide statistically significant (p < 0.05) predictive capabilities for desired breeding traits in American Alpine dairy goats.
Project description:Social environment interacts with functional microsatellite polymorphism of Avpr-1a to drive extra-pair paternity occurrence in the Alpine marmot (Marmota marmota)