ABSTRACT: Transcriptome signatures of genotype-by-genotype interaction in the endophytic colonization of rice plants by plant growth-promoting bacteria
Project description:High ambient temperature regulated the plant systemic response to the beneficial endophytic fungus Serendipita indica. Most plants in nature establish symbiotic associations with endophytic fungi in soil. Beneficial endophytic fungi induce a systemic response in the aboveground parts of the host plant, thus promoting the growth and fitness of host plants. Meanwhile, temperature elevation from climate change widely affects global plant biodiversity as well as crop quality and yield. Over the past decades, great progresses have been made in the response of plants to high ambient temperature and to symbiosis with endophytic fungi. However, little is known about their synergistic effect on host plants. The endophytic fungus Serendipita indica colonizes the roots of a wide range of plants, including Arabidopsis. Based on the Arabidopsis-S. indica symbiosis experimental system, we analyzed the synergistic effect of high ambient temperature and endophytic fungal symbiosis on host plants. By transcriptome analysis, we found that DNA replication-related genes were significantly upregulated during the systemic response of Arabidopsis aboveground parts to S. indica colonization. Plant hormones, such as jasmonic acid (JA) and ethylene (ET), play important roles in plant growth and systemic responses. We found that high ambient temperature repressed the JA and ET signaling pathways of Arabidopsis aboveground parts during the systemic response to S. indica colonization in roots. Meanwhile, PIF4 is the central hub transcription factor controlling plant thermosensory growth under high ambient temperature in Arabidopsis. PIF4 is also involving JA and/or ET signaling pathway. We found that PIF4 target genes overlapped with many differentially expressed genes (DEGs) during the systemic response, and further showed that the growth promotion efficiency of S. indica on the pif4 mutant was higher than that on the wild type plants.
Project description:<p><strong>BACKGROUND:</strong> The coevolution and interaction between plants and microorganisms have long been a subject of significant research interest. Dark septate endophytes (DSE) have garnered great attention in contemporary research due to their functional diversity, in vitro cultivation ability, and ability to establish symbiotic associations with host plants. In the present study, three DSE strains, namely <em>Acrocalymma vagum</em>, <em>Zopfiella marina</em>, and <em>Phoma herbarum</em>, which were obtained from the roots of <em>Astragalus membranaceus</em>, were introduced into maize plants through inoculation. We evaluated the effects of DSE inoculation on maize growth and root secretion activity through a multi omics methods, and proposed mechanisms for 'internal pathways' and 'external pathways'.</p><p><strong>RESULTS:</strong> The findings indicated that A. vagum exhibited superior growth-promoting ability on maize compared to <em>Z. marina</em> and <em>P. herbarum</em>.GO and KEGG enrichment analysis found that <em>A. vagum</em> inoculation resulted in significant enrichment of differentially expressed genes in annotation functions related to hormone regulation and lipid metabolism. A. vagum inoculation revealed that the gene pathways involved in plant hormone signaling and plant pathogen interactions play a crucial role in promoting host growth, and <em>A. vagum</em> inoculation group exhibited the highest number of differentially expressed genes, the most intricate protein-protein interaction (PPI) model, and the most pronounced relationship between differentially expressed genes. After the inoculation of <em>A.vagum</em>, the levels of salicylic acid, zeatin, and IAA in maize plants significantly increased. Additionally, the diversity and abundance of endophytic fungi, as well as the proportion of harmful bacteria and beneficial fungi, had significantly increased. Compared with <em>Z. marina</em> and <em>P. herbarum</em>, the net photosynthetic rate (Pn) and stomatal conductance (Gs) of <em>A.vagum</em> inoculated plants significantly increased. Inoculation with <em>A.vagum</em> could enhance the ability of corn roots to secrete lipids, sugars, and amino acids, resulted in a notable augmentation of beneficial bacteria and fungi, accompanied by a significant reduction in the proportion of harmful bacteria in the rhizosphere soil, such as <em>Fusarium solani</em> and <em>Fusarium lacertarum</em>, exhibited significant inhibition, whereas <em>Bacillus niabensis</em> and <em>Bacillus nealsonii</em> demonstrated enrichment trends. Soil pH, organic matter, available potassium content, acid phosphatase, alkaline phosphatase and urease activity exhibited significant increases following the inoculation of <em>A. vagum</em>. Variance decomposition and structural equation modeling (SEM) analysis indicated that the 'internal pathway', maize growth is mainly influenced by the interaction of endogenous hormones, endophytic microorganisms, and photosynthetic parameters, whereas within the 'external pathway', the interaction between soil microorganisms and soil physicochemical properties exerted a dominant influence. Compared with the <em>Z. marina</em> and <em>P. herbarum</em> inoculation, <em>A. vagum</em> inoculation showed a more significant impact on maize growth, both in terms of 'internal pathway' and 'external pathway', in terms of pathway level and quantity.</p><p><strong>CONCLUSIONS:</strong> These findings provide a new perspective for understanding the potential mechanisms of 'microbe-plant' interactions and also contribute to the exploration of targeted functional microorganisms that promote growth and stress resistance.</p>
Project description:Plant growth promoting rhizobacteria (PGPR) of the genus Bacillus are successfully used as biofertilizers and biopesticides. They potentially can reduce the use of chemicals in agriculture as an ecologically safe alternative, but to optimize the application of PGPR, more profound knowledge on specific gene regulation and molecular mechanisms of interaction with plants is needed. Advance in sequencing technologies made it affordable to compare transcriptom profiles of relative organisms to check to which extend PGPR strains or closely related species differ in their strategies of plant colonization. This work aimed at analysis of gene regulation in a biotechnological strain Bacillus atrophaeus UCMB-5137 to compare it with the gene expression profile of a generally recognized PGPR strain B. amyloliquefaciens FZB42. It was found out that despite the close taxonomic relatedness, these two organisms developed ability to colonize plants independently and use different strategies of plant colonization. Root exudate has triggered in UCMB-5137 alteration in expression in many genes controlled by stress response transcription factors (TF) SigB and SigD, while SigF, SigH, SigW, CcpA and several other TFs regulated genes associated with quorum sensing and biofilm formation, and adjusted the carbohydrate metabolism. Counting to peculiarities of gene regulation in different PGPR strains will allow optimization of their practical application.
Project description:Flooding events caused by severe rains and poor soil drainage can interfere with plant germination and seedling establishment. Rice is one of the cereal crops that has unique germination strategies under flooding. One of these strategies is based on the fast coleoptile elongation in order to reach the water surface and re-establish the contact with the air. Microorganisms can contribute to plant health via plant growth promoters and provide protection from abiotic stresses. To characterise the community composition of the microbiome in rice germination under submergence, a 16S rRNA gene profiling metagenomic analysis was performed of temperate japonica rice varieties Arborio and Lamone seedlings, which showed contrasting responses in terms of coleoptile length when submerged. This analysis showed a distinct microbiota composition of Arborio seeds under submergence, which are characterised by the development of a long coleoptile. To examine the potential function of microbial communities under submergence, culturable bacteria were isolated, identified and tested for plant growth-promoting activities. A subgroup of isolated bacteria showed the capacity to hydrolyse starch and produce indole-related compounds under hypoxia. Selected bacteria were inoculated in seeds to evaluate their effect on rice under submergence, showing a response that is dependent on the rice genotype. Our findings suggest that endophytic bacteria possess plant growth-promoting activities that can substantially contribute to rice seedling establishment under submergence.
Project description:Endophytic fungi are fungi that live inside the roots of plants. They can promote plant growth through a variety of direct and indirect mechanisms. Direct mechanisms include the production of phytohormones, such as auxin and gibberellins, which can stimulate plant growth. Endophytic fungi can also fix nitrogen, solubilize phosphate, and produce siderophores, which are compounds that chelate iron and make it available to plants. In addition, some endophytic fungi produce antimicrobial metabolites that can protect plants from pests and pathogens. Indirect mechanisms include the induction of systemic resistance, which is a plant's ability to defend itself against pests and pathogens. Endophytic fungi can also help plants to tolerate abiotic stresses, such as drought, salinity, and heavy metals. In this study, we used a proteomic approach to identify the proteins that are expressed in rice plants after they are treated with endophytic fungi. We found that the treatment with endophytic fungi resulted in the expression of a number of proteins involved in plant growth, stress response, and defense. These results suggest that endophytic fungi can promote plant growth and improve plant resilience to stress.
Project description:Sugarcane plantlets from a variety with high inputs of N obtained from BNF (genotype SP70-1143, CTC, Brazil) free of microorganisms were obtained by sterile meristem culture and micropropagation according to the method of Hendre et al. (1983). In vitro-grown SP70-1143 rooted sugarcane plantlets were inoculated as described by James et al. (1994) with 0.1 ml of 106–107 bacterial suspension. Controls were inoculated with medium only. Endophytic diazotrophic bacteria used were Gluconacetobacter diazotrophicus (PAL5 strain) or a mixture of Herbaspirillum seropedicae (HRC54 strain) and H. rubrisubalbicans (HCC103 strain). All plants were maintained at 30°C with an irradiance of 60 µmol photons m–2 s–1 for 12 h d–1. One day after the inoculation, plant tissues were examined for bacterial colonization by the Most Probable Number (MPN) estimation, according to the methods of Reis et al. (1994) and plantlets were collected and immediately frozen in liquid nitrogen. Five plantlets were polled for each treatment. Extraction of total RNA was performed separately on each sample pool. Keywords: comparison of associations with different endophytic bacterias
Project description:Although some mechanisms are known how plant growth beneficial bacteria help plants to grow under stressful conditions, we still know little how the metabolism of host plants and bacteria is coordinated during the establishment of functional interaction. In the present work, using single and dual transcriptomics, we studied the reprograming of metabolic and signaling pathways of Enterobacter sp. SA187 with Arabidopsis thaliana during the change from free-living to endophytic host-microbe interaction. We could identify major changes in primary and secondary metabolic pathways in both the host and bacteria upon interaction, with an important role of the sulfur metabolism and retrograde signaling in mediating plant resistance to salt stress. Also, we studied the effect of SA187 endogenous compounds and its role on sulfur metabolism and consequently salt tolerance. These data should help future research in the field of beneficial plant-microbe interactions for developing sophisticated strategies to improve agriculture of crops under adverse environmental conditions. transcriptome of Arabidopsis thaliana organs with beneficial microbe, beneficial microbe endogenous compound, and ethylene precursor
Project description:Plant growth promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short- term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Transcriptional profiles were determined by microarray analysis (Affymetrix ATH1 Genome Array) in Arabidopsis thaliana plants inoculated with the PGPR bacterial model Burkholderia phytofirmans PsJN
Project description:Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) disease in rice (Oryza sativa L.) and it is among the most destructive pathogen responsible for severe yield losses. Potential bacterial biocontrol agents (BCAs) with plant growth promotion (PGP) abilities can be applied to better manage the BLB disease and increase crop yield, compared to current conventional practices. Thus, this study aimed to isolate, screen, and identify potential BCAs with PGP abilities. Isolation of the BCAs was performed from internal plant tissues and rhizosphere soil of healthy and Xoo-infected rice. A total of 18 bacterial strains were successfully screened for in vitro antagonistic ability against Xoo, siderophore production and PGP potentials. Among the bacterial strains, 3 endophytes, Bacillus sp. strain USML8, Bacillus sp. strain USML9, and Bacillus sp. strain USMR1 which were isolated from diseased plants harbored the BCA traits and significantly reduced leaf blight severity of rice. Simultaneously, the endophytic BCAs also possessed plant growth promoting traits and were able to enhance rice growth. Application of the selected endophytes (BCAs-PGP) at the early growth stage of rice exhibited potential in suppressing BLB disease and promoting rice growth.