Project description:Here we present the assembled genome of the facultative methanotroph, Methylocystis strain SB2, along with assessment of its transcriptome when grown on methane vs. ethanol. As expected, transcriptomic analyses indicate methane is converted to carbon dioxide via the canonical methane oxidation pathway for energy generation, and that carbon is assimilated at the level of formaldehyde via the serine cycle. When grown on ethanol, it appears this strain converts ethanol to acetyl-CoA and then utilizes the TCA cycle for energy generation and the ethylmalonyl CoA pathway for the production of biomass.
Project description:Here we present the assembled genome of the facultative methanotroph, Methylocystis strain SB2, along with assessment of its transcriptome when grown on methane vs. ethanol. As expected, transcriptomic analyses indicate methane is converted to carbon dioxide via the canonical methane oxidation pathway for energy generation, and that carbon is assimilated at the level of formaldehyde via the serine cycle. When grown on ethanol, it appears this strain converts ethanol to acetyl-CoA and then utilizes the TCA cycle for energy generation and the ethylmalonyl CoA pathway for the production of biomass. All cultures were grown in triplicates for subsequent DNA and RNA extraction as well as for subsequent sequencing using Illumina. Transcriptomic analysis results presented in this Series.
Project description:p63 mutations have been associated with several human hereditary disorders characterized by ectodermal dysplasia such as EEC syndrome, ADULT syndrome and AEC syndrome . The location and functional effects of the mutations that underlie these syndromes reveal a striking genotype-phenotype correlation. Unlike EEC and ADULT that result from missense mutations in the DNA-binding domain of p63, AEC is solely caused by missense mutations in the SAM domain of p63. We report a study on the TAp63a isoform, the first to be expressed during development of the embryonic epithelia, and on its naturally occurring Q540L mutant derived from an AEC patient. To assess the effects of the Q540L mutation, we generated stable cell lines expressing TAp63a wt, DeltaNp63 alpha or the TAp63 alpha-Q540L mutant protein and used them to systematically compare the cell growth regulatory activity of the mutant and wt p63 proteins and to generate, by microarray analysis, a comprehensive profile of differential gene expression. We found that the Q540L substitution impairs the transcriptional activity of TAp63a and causes misregulation of genes involved in the control of cell growth and epidermal differentiation. Keywords: Hay Wells syndrome, TAp63alpha, genetic alteration, pp63 Q540L
Project description:Enhancing water quality surveillance and risk assessment for shallow groundwater wells with real-time online monitoring, stable water isotopes, and microbial community data
Project description:Methanotrophs, which help regulate atmospheric levels of methane, are active in diverse natural and man-made environments. This range of habitats and the feast-famine cycles seen by many environmental methanotrophs suggest that methanotrophs dynamically mediate rates of methane oxidation. Global methane budgets require ways to account for this variability in time and space. Functional gene biomarker transcripts are increasingly being studied to inform the dynamics of diverse biogeochemical cycles. Previously, per-cell transcript levels of the methane oxidation biomarker, pmoA, were found to vary quantitatively with respect to methane oxidation rates in model aerobic methanotroph, Methylosinus trichosporium OB3b. In the present study, these trends were explored for two additional aerobic methanotroph pure cultures, Methylocystis parvus OBBP and Methylomicrobium album BG8. At steady-state conditions, per cell pmoA mRNA transcript levels strongly correlated with per cell methane oxidation across the three methanotrophs across many orders of magnitude of activity (R2 = 0.91). Additionally, genome-wide expression data (RNA-seq) were used to explore transcriptomic responses of steady state M. album BG8 cultures to short-term CH4 and O2 limitation. These limitations induced regulation of genes involved in central carbon metabolism (including carbon storage), cell motility, and stress response.
Project description:Origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L), on the rumen bacterial community composition was further examined using the recently developed RumenBactArray.