Project description:N4-methylcytosine is a major DNA modification integral to restriction-modification (R-M) systems in bacterial genomes. Here we describe 4mC-Tet-Assisted Bisulfite-sequencing (4mC-TAB-seq), a method that accurately and rapidly reveals the genome-wide locations of N4-methylcytosines at single-base resolution. By coupling Tet-mediated oxidation with a modified sodium bisulfite conversion reaction, unmodified cytosines and 5-methylcytosines are read out as thymines, whereas N4-methylcytosines are read out as cytosines revealing their positions throughout the genome. 4mC-TAB-seq
Project description:The whole proteome analysis of the Pseudomonas sp. FIP_A4 strain in presence and absence of fipronil was conducted to evaluate the differentially expressed enzymes that can play role in fipronil degradation.
Project description:Proteomic analysis of an Antarctic bacterium Pseudomonas sp. Lz4W by tandem mass spectrometry to unveil the process of cold adaptation. Comparative whole proteome analysis was performed at Low and optimum temperature.
Project description:RNA-seq analysis of Pseudomonas sp OST1909 exposed to various preparations of naphthenic acids samples led to the identiifcation of many NA-induced genes.
Project description:N4-methylcytosine is a major DNA modification integral to restriction-modification (R-M) systems in bacterial genomes. Here we describe 4mC-Tet-Assisted Bisulfite-sequencing (4mC-TAB-seq), a method that accurately and rapidly reveals the genome-wide locations of N4-methylcytosines at single-base resolution. By coupling Tet-mediated oxidation with a modified sodium bisulfite conversion reaction, unmodified cytosines and 5-methylcytosines are read out as thymines, whereas N4-methylcytosines are read out as cytosines revealing their positions throughout the genome.