Project description:As a historical nomadic group in Central Asia, Kazaks have mainly inhabited the steppe zone from the Altay Mountains in the East to the Caspian Sea in the West. Fine scale characterization of the genetic profile and population structure of Kazaks would be invaluable for understanding their population history and modeling prehistoric human expansions across the Eurasian steppes. With this mind, we characterized the maternal lineages of 200 Kazaks from Jetisuu at mitochondrial genome level. Our results reveal that Jetisuu Kazaks have unique mtDNA haplotypes including those belonging to the basal branches of both West Eurasian (R0, H, HV) and East Eurasian (A, B, C, D) lineages. The great diversity observed in their maternal lineages may reflect pivotal geographic location of Kazaks in Eurasia and implies a complex population history. Comparative analyses of mitochondrial genomes of human populations in Central Eurasia reveal a common maternal genetic ancestry for Turko-Mongolian speakers and their expansion being responsible for the presence of East Eurasian maternal lineages in Central Eurasia. In addition, our analyses indicate maternal genetic affinity between the Sherpas from the Tibetan Plateau with the Turko-Mongolian speakers.
Project description:To further explore the biotoxicity mechanisms of zinc oxide nanoparticles (ZnO NPs) and the recovery strategies of the accordingly impaired Nitrosomonas europaea (N. europaea, ATCC 19718) cells, a genome-sequenced model ammonia-oxidizing bacterium (AOB) commonly detected in the activated sludge of biological wastewater treatment plants, whole-genome microarray analysis was applied to retrieve the induced transcriptional responses, after their physiological and metabolic activities were revealed.
Project description:To further explore the biotoxicity mechanisms of CeO2 nanoparticles (NPs) and the recovery strategies of the according impaired Nitrosomonas europaea (N. europaea, ATCC 19718) cells, a genome-sequenced model ammonia oxidizing bacterium (AOB) commonly detected in the activated sludge of biological wastewater treatment plants, the whole-genome microarray analysis was applied to retrieve the induced transcriptional responses, after their physiological and metabolic activities were evealed.
Project description:To further explore the biotoxicity mechanisms of TiO2 nanoparticles (NPs) and the recovery potentials of the impaired Nitrosomonas europaea (N. europaea, ATCC 19718) cells, a genome-sequenced model ammonia oxidizing bacterium (AOB) commonly detected in the activated sludge of biological wastewater treatment plants, the whole-genome microarray analysis was applied to retrieve the induced transcriptional responses during the long-term exposure, after the toxicity effects and the recovery potentials were assessed at both physiological and metabolic levels.
Project description:To further explore and differentiate the biotoxicity mechanisms of individual nanoparticles (NPs) and NP mixture on Nitrosomonas europaea (N. europaea, ATCC 19718) at genetic level, a genome-sequenced model ammonia oxidizing bacterium (AOB) commonly detected in the activated sludge of biological wastewater treatment plants, the induced whole-genome expressions were analyzed with the high throughput Microarray technique, after the dose-dependent changes of N. europaea’s physiological, metabolic and AMO enzyme activities in single and dual component NP systems was evaluated.
Project description:Investigation of whole genome gene expression level changes in a Nitrosomonas europaea (ATCC 19718) wildtype and pFur::Kan mutant [kanamycin resistance cassette insertion in the promoter region of the fur gene (NE0616)] strains grown in Fe-replete and Fe-limited media. The Nitrosomonas europaea (ATCC 19718) wiltype cells grown in Fe-limited media were compared to cells grown in Fe-replete media to gain a better understanding of the metabolic changes occurring in response to iron stress. The Nitrosomonas europaea (ATCC 19718) pFur::Kan mutant strain grown in Fe-replete & Fe-limited media were compared to wildtype cells grown in Fe=replete & Fe-limited media to gain a better understanding of the role Fur (NE0616) plays in iron homeostasis control. A 4-plex 3 chip study using total RNA recovered from three separate wild-type cultures each of N. europaea grown in Fe-replete media and Fe-limited media and three seperate cultures each of N. europaea pFur::Kan mutant strain grown in Fe-replete and Fe-limited media. Each chip measures the expression level of 2368 genes from Nitrosomonas europaea (ATCC19718) with 4 X 72,000 60-mer 14 probe pairs per gene, with two-fold technical redundancy.