Project description:The regulation of gene expression and RNA maturation underlies fundamental processes such as cell homeostasis, development and stress acclimation. The biogenesis and modification of RNA is tightly controlled by an array of regulatory RNAs and nucleic acid-binding proteins. While the role of small RNAs (sRNAs) in gene expression has been studied in-depth in select model organisms, little is known about sRNA biology across the eukaryotic tree of life. We used deep sequencing to explore the repertoires of sRNAs encoded by the miniaturized, endosymbiotically-derived ‘nucleomorph’ genomes of two single-celled algae, the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. A total of 32.3 and 35.3 million reads were generated from G. theta and B. natans, respectively. In G. theta, we identified nucleomorph U1, U2 and U4 spliceosomal RNAs (snRNAs) as well as 11 C/D box small nucleolar RNAs (snoRNAs), five of which have potential plant and animal homologs. The snoRNAs are predicted to perform 2’-O methylation of rRNA (but not snRNA). In B. natans, we found previously undetected RNA components of the nucleomorph spliceosome (U4 snRNA) and ribosome (5S rRNA), along with six orphan sRNAs. Analysis of chlorarachniophyte snRNAs shed light on the removal of the miniature 18-21 nt introns found in B. natans nucleomorph genes. Neither of the nucleomorph genomes appears to encode RNA pseudouridylation machinery, and U5 snRNA cannot be found in the cryptophyte. Considering the central roles of U5 snRNA and RNA modifications in other organisms, cytoplasm-to-nucleomorph RNA shuttling in cryptophyte algae is a distinct possibility.
Project description:Nucleomoprhs are remnants of secondary endosymbiotic events between two eukaryote cells wherein the endosymbiont has retained its eukaryotic nucleus. Nucleomoprhs have evolved at least twice independently, in chlorarachniophytes and cryptophytes, yet they have converged on a remarkably similar genomic architecture, characterized by the most extreme compression and minituarization among all known eukaryotes. Previous computational studies have suggested that nucleomorph chromatin likely exhibits a number of divergent features. In this work, we provide the first maps of open chromatin, active transcription, and three-dimensional genome architecture in the nucleomorph of the chlorarachniophyte Bigelowiella natans
Project description:Analyses of new genomic, transcriptomic or proteomic data commonly result in trashing many unidentified data escaping the ‘canonical’ DNA-RNA-protein scheme. Testing systematic exchanges of nucleotides over long stretches produces inversed RNA pieces (here named “swinger” RNA) differing from their template DNA. These may explain some trashed data. Here analyses of genomic, transcriptomic and proteomic data of the pathogenic Tropheryma whipplei according to canonical genomic, transcriptomic and translational 'rules' resulted in trashing 58.9% of DNA, 37.7% RNA and about 85% of mass spectra (corresponding to peptides). In the trash, we found numerous DNA/RNA fragments compatible with “swinger” polymerization. Genomic sequences covered by «swinger» DNA and RNA are 3X more frequent than expected by chance and explained 12.4 and 20.8% of the rejected DNA and RNA sequences, respectively. As for peptides, several match with “swinger” RNAs, including some chimera, translated from both regular, and «swinger» transcripts, notably for ribosomal RNAs. Congruence of DNA, RNA and peptides resulting from the same swinging process suggest that systematic nucleotide exchanges increase coding potential, and may add to evolutionary diversification of bacterial populations.