Project description:Identification of abscission regulated genes Genes involved in auxin transport and response are down-regulated in axils of shaded leaves.
Project description:The strictly monophagous olive fruit fly, Bactrocera oleae, represents the major pest of olive orchards worldwide. It has the unique ability to hydrolyze olive proteins as well as to overcome olive defenses, especially the high levels of phenolic compounds present in the green olive mesocarp. In this study, we aimed to identify specific genes potentially implicated in overcoming green olive defense and the utilization of the flesh, by examining larval responses to green olives on the transcript level. Focusing on the up-regulated gene set, we identified two putative serine proteases and one putative UDP-glycosyltransferase possibly associated with these traits. Serine proteases could be involved in the digestion of dietary proteins but also could represent a mechanism to overcome the effect of trypsin inhibitors induced by the olive fruit upon attack. UDP-glycosyltransferase may be implicated in the sequestration and/ or direct detoxification of phenolic compounds highly present in green olives.
Project description:Proteins and peptides are minor components of vegetal oils. The presence of these compounds in virgin olive oil was first reported in 2001, but the nature of the olive oil proteome is still a puzzling question for food science researchers. In this project, we have compiled for a first time a comprehensive proteomic dataset of olive fruit and fungal proteins that are present at low but measurable concentrations in a vegetable oil from a crop of great agronomical relevance as olive (Olea europaea L.). Accurate mass nLC-MS data were collected in high definition direct data analysis (HD-DDA) mode using the ion mobility separation step. Protein identification was performed using the Mascot Server v2.2.07 software (Matrix Science) against an ad hoc database made of olive protein entries. Starting from this proteomic record, the impact of these proteins on olive oil stability and quality could be tested. Moreover, the effect of olive oil proteins on human health and their potential use as functional food components could be also evaluated. In addition, this dataset provides a resource for use in further functional comparisons across other vegetable oils, and also expands the proteomic resources to non-model species, thus also allowing further comparative inter-species studies.