Project description:Purpose: In order to clarify the molecular response mechanism of Tetranychus truncatus to sublethal concentrations of abamectin. Methods: We sequenced the transcriptome of Tetranychus truncatus treated with sublethal concentration of abamectin and control. Results: we provide a comprehensive transcriptome resource for Tetranychus truncatus derived from treating with sublethal concentration abamectin and control. Conclusions: The new genomic resources and data that we present in this study for Tetranychus truncatus will substantially facilitate molecular studies of underlying mechanisms involved in abamectin resistance.
Project description:To determine what can the transcriptome tell us about populations of free-ranging bottlenose dolphins, Tursiops truncatus. Keywords: health assessment
Project description:Analyses of new genomic, transcriptomic or proteomic data commonly result in trashing many unidentified data escaping the ‘canonical’ DNA-RNA-protein scheme. Testing systematic exchanges of nucleotides over long stretches produces inversed RNA pieces (here named “swinger” RNA) differing from their template DNA. These may explain some trashed data. Here analyses of genomic, transcriptomic and proteomic data of the pathogenic Tropheryma whipplei according to canonical genomic, transcriptomic and translational 'rules' resulted in trashing 58.9% of DNA, 37.7% RNA and about 85% of mass spectra (corresponding to peptides). In the trash, we found numerous DNA/RNA fragments compatible with “swinger” polymerization. Genomic sequences covered by «swinger» DNA and RNA are 3X more frequent than expected by chance and explained 12.4 and 20.8% of the rejected DNA and RNA sequences, respectively. As for peptides, several match with “swinger” RNAs, including some chimera, translated from both regular, and «swinger» transcripts, notably for ribosomal RNAs. Congruence of DNA, RNA and peptides resulting from the same swinging process suggest that systematic nucleotide exchanges increase coding potential, and may add to evolutionary diversification of bacterial populations.