Project description:Pseudomonas aeruginosa infections for individuals with Cystic Fibrosis (CF), result in high morbidity and mortality, with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel anti-biofilm strategies highly desirable. Within the P. aeruginosa biofilm, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin to disrupt intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in artificial CF sputum media (ASMDM+). Confocal scanning laser microscopy showed that 2mM GSH alone or combined with DNase I significantly disrupted the immature (24 hour) biofilms of Australian Epidemic Strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted the mature (72 hour) biofilm of AES-1R, resulting in significant differential expression of 587 genes, as evidenced by RNA-sequencing. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the Type VI secretion system, nitrate metabolism and translational machinery. Physiochemical biofilm disruption with GSH revealed a metabolically active cellular physiology distinct from either mature or dispersed biofilm physiology. RNA-seq results were validated by biochemical assay and qPCR. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved at 10mM GSH. This study demonstrated that GSH alone or with DNase I represent effective anti-biofilm treatments when combined with appropriate antibiotics.
Project description:Is there a universal genetically programmed defense providing tolerance to antibiotics when bacteria grow as biofilms? A comparison between biofilms of three different bacterial species by transcriptomic and metabolomic approaches uncovered no evidence of one. Single-species biofilms of three bacterial species (Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii) were grown in vitro for three days then challenged with respective antibiotics (ciprofloxacin, daptomycin, tigecycline) for an additional 24 h. All three microorganisms displayed reduced susceptibility in biofilms compared to planktonic cultures. Global transcriptomic profiling of gene expression comparing biofilm to planktonic and antibiotic-treated biofilm to untreated biofilm was performed. Extracellular metabolites including 18 amino acids, glucose, lactate, acetate, formate, and ethanol were measured to characterize the utilization of carbon sources between biofilms, treated biofilms, and planktonic cells. While all three bacteria exhibited a species-specific signature of stationary phase, no conserved gene, gene set, or common functional pathway could be identified that changed consistently across the three microorganisms. Across the three species, glucose consumption was increased in biofilms compared to planktonic cells and alanine and aspartic acid utilization were decreased in biofilms compared to planktonic cells. The reasons for these changes were not readily apparent in the transcriptomes. No common shift in the utilization pattern of carbon sources was discerned when comparing untreated to antibiotic-exposed biofilms. Overall, our measurements do not support the existence of a common genetic or biochemical basis for biofilm tolerance against antibiotics. Rather, there are likely myriad genes, proteins, and metabolic pathways that influence the physiological state of microorganisms in biofilms contributing to antibiotic tolerance. The Acinetobacter baumannii microarray data from the study described above is deposited here.
Project description:Is there a universal genetically programmed defense providing tolerance to antibiotics when bacteria grow as biofilms? A comparison between biofilms of three different bacterial species by transcriptomic and metabolomic approaches uncovered no evidence of one. Single-species biofilms of three bacterial species (Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii) were grown in vitro for three days then challenged with respective antibiotics (ciprofloxacin, daptomycin, tigecycline) for an additional 24 h. All three microorganisms displayed reduced susceptibility in biofilms compared to planktonic cultures. Global transcriptomic profiling of gene expression comparing biofilm to planktonic and antibiotic-treated biofilm to untreated biofilm was performed. Extracellular metabolites including 18 amino acids, glucose, lactate, acetate, formate, and ethanol were measured to characterize the utilization of carbon sources between biofilms, treated biofilms, and planktonic cells. While all three bacteria exhibited a species-specific signature of stationary phase, no conserved gene, gene set, or common functional pathway could be identified that changed consistently across the three microorganisms. Across the three species, glucose consumption was increased in biofilms compared to planktonic cells and alanine and aspartic acid utilization were decreased in biofilms compared to planktonic cells. The reasons for these changes were not readily apparent in the transcriptomes. No common shift in the utilization pattern of carbon sources was discerned when comparing untreated to antibiotic-exposed biofilms. Overall, our measurements do not support the existence of a common genetic or biochemical basis for biofilm tolerance against antibiotics. Rather, there are likely myriad genes, proteins, and metabolic pathways that influence the physiological state of microorganisms in biofilms contributing to antibiotic tolerance. The Staphylococcus aureus microarray data from the study described above is deposited here.
Project description:Bacteria in biofilms have higher antibiotic tolerance than their planktonic counterparts. A major outstanding question is the degree to which the biofilm-specific cellular state and its constituent genetic determinants contribute to this hyper-tolerant phenotype. Here, using genome-wide functional profiling of a complex, heterogeneous mutant population of Pseudomonas aeruginosa MPAO1, we identified large sets of mutations that contribute to antibiotic tolerance predominantly in the biofilm or planktonic setting only. Our mixed population-based experimental design recapitulated the complexity of natural biofilms and, unlike previous studies, revealed clinically observed behaviors including the emergence of quorum sensing-deficient mutants. Our study revealed a substantial contribution of the cellular state to the antibiotic tolerance of biofilms, providing a rational foundation for the development of novel therapeutics against P. aeruginosa biofilm-associated infections. This dataset compares the expression of SAH108, a strain with enhanced antibiotic tolerance in the biofilm state, to expression in wild-type strains.
Project description:Haemophilus influenzae responds to the steroid beclomethasone used in asthma therapy by modulation of biofilm formation and antibiotic tolerance
Project description:Bacteria in biofilms have higher antibiotic tolerance than their planktonic counterparts. A major outstanding question is the degree to which the biofilm-specific cellular state and its constituent genetic determinants contribute to this hyper-tolerant phenotype. Here, using genome-wide functional profiling of a complex, heterogeneous mutant population of Pseudomonas aeruginosa MPAO1, we identified large sets of mutations that contribute to antibiotic tolerance predominantly in the biofilm or planktonic setting only. Our mixed population-based experimental design recapitulated the complexity of natural biofilms and, unlike previous studies, revealed clinically observed behaviors including the emergence of quorum sensing-deficient mutants. Our study revealed a substantial contribution of the cellular state to the antibiotic tolerance of biofilms, providing a rational foundation for the development of novel therapeutics against P. aeruginosa biofilm-associated infections. This dataset compares the expression of SAH108, a strain with enhanced antibiotic tolerance in the biofilm state, to expression in wild-type strains. We compared the expression of two biological replicates from strain SAH108 to samples from three wild-type, reference strains. All samples were collected from exponentially-growing planktonic cultures.
Project description:Microarray analysis was used to identify changes in the level of transcription of genes in P. aeruginosa drip flow biofilms in response to ciprofloxacin and tobramycin exposure. This data was evaluated and used to select strains that carry transposon mutations in genes that might play a role in antibiotic tolerance of biofilms. The strains were evaluated for defects in biofilm tolerance. Four drip flow biofilm conditions with three replicates each: (1) baseline controls at 72 hours, (2) tobramycin treated for 12 hours past baseline, (3) ciprofloxacin treated for 12 hrs past baseline, and (4) no treatment for 12 hrs past baseline.
Project description:Microarray analysis was used to identify changes in the level of transcription of genes in P. aeruginosa drip flow biofilms in response to ciprofloxacin and tobramycin exposure. This data was evaluated and used to select strains that carry transposon mutations in genes that might play a role in antibiotic tolerance of biofilms. The strains were evaluated for defects in biofilm tolerance.
Project description:Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.
Project description:Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10M-BM-5g/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. 12 samples