Project description:Gene expression profiles of human cell (THP-1) lines exposed to a novel Daboiatoxin (DbTx) isolated from Daboia russelli russelli, and specific cytokines and inflammatory pathways involved in acute infection caused by Burkholderia pseudomallei. Keywords: Melioidosis, Burkholderia pseudomallei, Daboiatoxin, Cytokines, Inflammation.
Project description:Gene expression profiles of human cell (THP-1) lines exposed to a novel Daboiatoxin (DbTx) isolated from Daboia russelli russelli, and specific cytokines and inflammatory pathways involved in acute infection caused by Burkholderia pseudomallei. Experiment Overall Design: 1. Group I:- Human monocytic macrophage (THP-1) cell lines grown in the culture medium without any bacterial infection served as untreated control group (Three Biological Replicates). Experiment Overall Design: 2. Group II:- THP-1 cells were infected with Burkholderia pseudomallei (A600 nm = OD 0.6, ~5 x 107 cfu/ml) for 24h served as a disease control group (Three Biological Replicates). Experiment Overall Design: 3. Group III:- THP-1 cells were infected with B. pseudomallei and treated with Daboiatoxin (0.5 mM) isolated from Daboia russelli russelli venom served as a treatment group (Three Biological Replicates). Experiment Overall Design: 4. Group IV:- THP-1 cells were infected with B. pseudomallei (A600 nm = OD 0.6, ~5 x 107 cfu/ml) treated with standard antimicrobial drug ceftazidime (10mg/ml) served as a drug control (Three Biological Replicates). Experiment Overall Design: 5. Group V:- THP-1 cells were exposed to Daboiatoxin (0.5 mM) without bacterial infection (Three Biological Replicates).
Project description:Melioidosis is a neglected tropical disease caused by the Gram-negative bacterium Burkholderia pseudomallei. It is widespread in Southeast Asia and under-reported across tropical regions worldwide. Patients present with a range of clinical syndromes including sepsis, pneumonia and focal abscesses, with a mortality rate of 40% in hospitalized patients in Thailand. Up to two-thirds of patients with melioidosis have diabetes mellitus. In this experiment we sought to characterize pathways activated by whole killed B. pseudomallei bacteria and by three vaccine candidate proteins from B. pseudomallei, BPSL2520 (uncharacterized protein), BPSS1525 (BopE) and BPSL2096 (AhpC) in patients with diabetes and acute melioidosis.