Project description:Phalaenopsis aprodite subsp. formosana is one of the most important species for Phalaenopsis breeding. A mutant line with variegated leaf is found in this species. The green leaves bear unstable yellow sectors. In order to investigate the molecular mechanism of the variegated mutant line, we sequenced the transcriptome of variegated mutant by Illumina's Solexa sequencing technology. The sequence analysis results showed 22,598 unigenes by de novo assembly method, and the average unigene length was 1,286 bp. The bioinformatics tools were used to screen the differential expression between green and yellow sectors of leaves. There were 389 differentially expressed unigenes were identified. In addition, Gene ontology (GO) and KEGG pathway analyses revealed diverse biological functions and processes from differentially expressed genes. In transcriptome analysis, seven differential expression gene between the green and yellow sectors of leaves can be identified as CHLM, CRD1, POR, CLH, SGR, psbA and Lhcb6 by RNA deep sequencing. The expression of candidate genes was confirmed using semi-quantitative reverse transcription (RT) PCR and real-time RT PCR. The result showed that the significantly differential expression of CLH and SGR between green and yellow sectors was confirmed. It is suggested that the overexpressed SGR gene promotes the function of chlorophyllase, leading to the rapid degradation of chlorophyll in yellow sector. It causes the chlorophyll to not accumulate in the yellow sector, as a result, the variegated leaves are shown.
Project description:In the seabed, chemical defences mediate inter- and intraspecific interactions and may determine organisms’ success, shaping the diversity and function of benthic communities. Sponges represent a prominent example of chemically-defended marine organisms with great ecological success. The ecological factors controlling the production of their defensive compounds and the evolutionary forces that select for these defences remain little understood. Each sponge species produces a specific and diverse chemical arsenal with fish-deterrent, antifouling and antimicrobial properties. However, some small animals (mesograzers), mainly sea slugs, have specialized in living and feeding on sponges. Feeding on chemically-defended organisms provides a strategy to avoid predators, albeit the poor nutritional value of sponges. In order to investigate the mechanisms that control sponge chemical defence, with particular focus on the response to specialist grazers, we investigated the interaction between the sponge Aplysina aerophoba and the sea slug Tylodina perversa. Here we performed controlled experiments and collected sponge samples at different time points (3h, 1d and 6d after treatment). To further elucidate if the sponge response is specific to grazing by T. perversa, we also included a treatment in which sponges were mechanically damaged with a scalpel. We compared gene expression between treatments based on RNA-Seq data.
Project description:Monitor changes in the proteome of senescing leaves, using protein MS data obtained from the same leaf groups used for imaging. Arabidopsis thaliana mature leaves were grouped according to their chlorophyll content: Dark Green (DG), Green (G), Light Green (LG) and Yellow (Y), containing 100, 45, 25 and 6.5% chlorophyll relative to DG, respectivelyArabidopsis thaliana mature leaves were grouped according to their chlorophyll content: Dark Green (DG), Green (G), Light Green (LG) and Yellow (Y), containing 100, 45, 25 and 6.5% chlorophyll relative to DG, respectively