Project description:Palatine tonsils are secondary lymphoid organs that are strategically positioned in the oropharynx to secure a first line of defense against oral pathogens. Specialized immune-interacting fibroblasts, generally termed fibroblastic reticular cells (FRC), underpin distinct microenvironments within lymphoid organs to compartmentalize and direct the efficient interaction and activation of immune cells. As a particular anatomical property, palatine tonsils harbor a reticular-shaped lymphoepithelium that generates an antigen sampling zone in the crypts. While the histological ultrastructure and the immune cell composition of human palatine tonsils has been elaborated in detail, the molecular identity of the diverse stromal cell compartments including FRC and the specialized lymphoepithelium remains largely unknown. Here, we have employed single cell transcriptomics and extensive flow cytometric analyses to unveil the molecular identity of tonsillar cells and to disentangle the heterogeneity of fibroblast and epithelial cell subsets in palatine tonsils. Our results reveal a remarkable conservation of stromal cell organization and molecularly-defined subsets in infant and adult human palatine tonsils.
Project description:To study resident immune cells in Hhip-deleted lungs, we conduct single-cell RNAseq of the resident immune cells from Gli1HhipCKO_Tam and Gli1HhipCKO_Oil_Control mice lungs using 10X genomics scRNAseq technique.
Project description:B cell-interacting reticular cells (BRC) form transcriptionally and topologically stable immune-interacting microenvironments that direct efficient humoral immunity. While several immune niche factors have been elucidated, the cues sustaining BRC function and topology across activation states remain unclear. Here, we employed single cell RNA-sequencing of human lymph node stromal cells and immune cells to analyse local BRC-immune cell interactions and compare them across SLOs and species from additional datasets. Shared BRC subsets were imprinted by tissue-specific gene signatures, but also expressed functionally convergent niche factors that directed regionalized leukocyte composition. Local BRC-immune cell interactions sustained BRC subset identity via immune cell-provided maturation factors. Bidirectional signalling programs were independent of activation state and mirrored across murine and human tissues. Collectively, our data reveal a conserved set of feedforward BRC-immune cell circuits that sustain topologically-organized, functional niches across inflammatory states, lymphoid organs and species.
Project description:B cells from tonsils of human donors were extracted for combined RNAseq+ATACseq from the same cell. One sample was prepared separately ("old") and is of lower quality, but still included. It primarily holds ATACseq information.
Project description:GEP on Affymetrix U133+2.0 microarrays was performed on 6 centroblasts and 6 paired centrocytes from human tonsils in order to explore CB/CC transition and GC-B cell specific signatures