Project description:The Ashanti Dwarf Pig (ADP) of Ghana is an endangered pig breed with hardy and disease resistant traits. Characterisation of animal genetic resources provides relevant data for their conservation and sustainable use for food security and economic development. We investigated the origin and phylogenetic status of the local ADP of Ghana and their crosses with modern commercial breeds based on mtDNA, MC1R and Y-chromosome sequence polymorphisms, and genome-wide SNP genotyping. The study involved 164 local pigs sampled from the three agro-ecological zones of Ghana. Analyses of the mitochondrial D-loop region and Y-chromosome sequences revealed that the ADP of Ghana has both European and Asian genetic signatures. The ADP also displays considerable variation in the MC1R gene. Black coat colour is the most predominant within the breed, with the dominant black alleles of both Asian and European origin contributing to the majority of alleles in the pool. European alleles for spotting are present at a low frequency in the sample set, and may account for the occurrence of spotted piglets in some APD litters. Other colour variants may be due to epistatic interactions with additional coat colour loci, or mutations. The wide variations in coat colour patterns suggest that morphology alone cannot be used to adequately characterise Ghanaian local pigs. PCA analysis of SNP genotyping data revealed a strong location effect on clustering of local Ghanaian pigs. Based on this work, we recommend that further studies be carried out on more local pigs to find out the effect of admixture on important adaptive and economic traits of the ADP and other local Sus breeds in Africa to help develop a sustainable conservation programmes to prevent the decline of this genetic resource.
Project description:we compared the skin transcriptomes of the black- and white-coated region from the Boer and Macheng Black crossbred goat with black head and white body using the Illumina RNA-Seq method. Six cDNA libraries derived from skin samples of the white coat region (n = 3) and black coat region (n = 3) were constructed from three full-sib goats. On average, we obtained approximately 76.5 and 73.5 million reads for each skin sample of black coat and white coat, respectively, of which 75.39% and 76.05% reads were covered in the genome database. Our study provides insight into the transcriptional regulation of two distinct coat color that might serve as a key resource for understanding coat color pigmentation of goat.
Project description:Seed coat colour is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds, such as seed dormancy, longevity, oil content, protein content and fibre content. In Brassica napus, inheritance of seed coat colour is related to maternal effects and pollen effects (xenia effects). In this research, we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus with pollen effect. Microcopy of transverse sections of the mature seed shows pigment is deposited only in the epidermal cells, the first cell layer of seed coat. By Illumina Hiseq 2000 sequencing technology, a total of 12 G clean data, 116x coverage of coding sequences of B. napus, was achieved from 26-day old brown and yellow seeds. It was assembled into 172,238 independent transcripts and 55,637 unigenes by Trinity. A total of 150 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus. Only 49 of the TT orthologous genes are transcripted in seeds. However transcription of all the orthologs was independent of the embryonal control of seed coat colour. Of all the Trinity-assembled unigenes, only 55 genes were found to be differentially expressed between the brown seeds and yellow mutant. Among them 50 were up-regulated and 5 were down-regulated in the yellow seeds as compared to the brown counterpart. By KEGG classification, 14 metabolic pathways were enriched significantly. Of these, 5 pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were produced at higher levels in the embryo of yellow seeds as compared to brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the 26-day embryo of yellow seeds. Pigment indispensable substrate chalcone is synthesized from two molecules of Ala and one molecule of Phe. The correlation between accumulation of Ala and Phe and disappearance of pigment in the yellow seeded mutant indicate that embryonal control of seed coat colour is related with Phe and Ala metabolism in the embryo of B. napus.
Project description:We combined an iTRAQ-based proteome-level analysis with an RNA sequencing-based transcriptome-level analysis to detect the proteins and genes related to fruit peel colour development during two fruit development stages in the ‘Tunisia’ and ‘White’ pomegranate cultivars.