Project description:NK cells, as a type of key immune cell, play essential roles in tumor cell immune escape and immunotherapy. Accumulating evidence has demonstrated that the gut microbiota community affects the efficacy of anti-PD1 immunotherapy and that remodeling the gut microbiota structure is a promising strategy to enhance anti-PD1 immunotherapy responsiveness in advanced melanoma patients; however, the details of the mechanism remain elusive. In this study, we found that Eubacterium rectale (E. rectale) was significantly enriched in melanoma patients who responded to anti-PD1 immunotherapy and a high E. rectale abundance was related to longer survival in melanoma patients. Furthermore, administration of E. rectale remarkably improved the efficacy of anti-PD1 therapy and benefited the overall survival of tumor-bearing mice; moreover, application of E. rectale significantly recruited NK cells into the tumor microenvironment. Interestingly, conditioned medium isolated from an E. rectale culture system dramatically enhanced NK-cell function. Through GC-MS/ UHPLC-MS/MS-based metabolomic analysis, L-serine production was found to be significantly decreased in the E. rectale group; moreover, administration of an L-serine synthesis inhibitor dramatically increased NK-cell activation, which led to enhanced anti-PD1 immunotherapy effects. Mechanistically, supplementation with L-serine or application of the L-serine synthesis inhibitor affected NK-cell activation through Fos/Fosl. In summary, our findings reveal the role of bacteria-modulated serine metabolic signaling in NK-cell activation and provide a novel therapeutic strategy to improve the efficacy of anti-PD1 immunotherapy in melanoma.
Project description:The adult human gut microbial community is typically dominated by two bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from E. rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the former possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole genome transcriptional profiling of both organisms in their distal gut (cecal) habitat as well as host responses, high resolution proteomic analysis of cecal contents, and biochemical assays of carbohydrate metabolism. B. thetaiotaomicron adapts to E. rectale by upregulating expression of a variety of polysaccharide utilization loci (PULs) encoding numerous glycoside hydrolase gene families, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is utilized by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of major gut bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability.
Project description:BackgroundInflammatory bowel disease caused by microbial dysbiosis is an important factor contributing to colorectal cancer (CRC) initiation. The 'driver-passenger' model in human gut microbial dysbiosis suggests that 'driver' bacteria may colonize with low relative abundance on tumor site but persistently induce chronic change in normal intestinal epithelium and initiate CRC. They are gradually replaced by 'passenger' bacteria later on, due to their low adaptability to the on-tumor site niche.ResultsTo reveal site-specific bacterial taxon markers in CRC patients, we analyzed the gut mucosal microbiome of 75 paired samples of on-tumor and tumor-adjacent sites, 75 off-tumor sites, and 26 healthy controls. Linear discriminant analysis of relative abundance profiles revealed unique bacterial taxon distribution correlated with specific tumor sites, with Eubacterium having the distribution characteristic of potential driver bacteria. We further show that Eubacterium rectale endotoxin activates the transcription factor NF-κΒ, which regulates multiple aspects of innate and adaptive immune responses in normal colon epithelial cells. Unlike the 'passenger' bacterium Fusobacterium nucleatum, E. rectale promotes dextran sodium sulfate-induced colitis in Balb/c mice.ConclusionsOur findings reveal that E. rectale functions as a 'driver' bacterium and contributes to cancer initiation via promoting inflammation.
Project description:The adult human gut microbial community is typically dominated by two bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from E. rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the former possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole genome transcriptional profiling of both organisms in their distal gut (cecal) habitat as well as host responses, high resolution proteomic analysis of cecal contents, and biochemical assays of carbohydrate metabolism. B. thetaiotaomicron adapts to E. rectale by upregulating expression of a variety of polysaccharide utilization loci (PULs) encoding numerous glycoside hydrolase gene families, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is utilized by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of major gut bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability.
Project description:To understand transcriptional regulation of Eubacterium limosum KIST612 across different carbon/energy/electron sources, RNAseq analysis was carried out over different substrate conditions (glucose, CO, H2/CO2).