Project description:We report an small RNA sequencing (sRNA-seq) approach to identify host sRNAs involved in the nitrogen fixing symbiosis between Mesoamerican Phaseolus vulgaris and Rhizobium etli strains with different degrees in nodulation efficiency. This approach identified conserved and known microRNAs (miRNAs) differentially accumulated in Mesoamerican P. vulgaris roots in response to a highly efficient strain, to a less efficient one or to both strains.
Project description:Various species of rhizobium establish compatible symbiotic relationships with soybean (Glycine max) leading to the formation of nitrogen-fixing nodules in roots. The formation of functional nodules is mediated through complex developmental and transcriptional reprogramming that involves the activity of thousands of plant genes. However, host transcriptome responses that determine the outcome of the symbiotic interactions leading to the formation of functional or non-functional nodules remain unexplored. In this study, we investigated differential compatibilities between rhizobium strains (Bradyrhizobium diazoefficiens USDA 110Bradyrhizobium sp. strain LVM 105) and cultivated and wild soybeans. The nodulation assays revealed that both USDA 110 and LVM 105 strains effectively nodulate G. soja but only USDA 110 can form symbiotic relationships with Williams 82. RNA-seq data revealed that USDA 110 and LVM 105 induce distinct transcriptome programming in functional mature nodules formed on G. soja roots where genes involved in nucleosome assembly, DNA replication, regulation of cell cycle, and defense responses play key roles. Transcriptome comparison also suggested that activation of genes associated with cell wall biogenesis and organization and defense responses together with downregulation of genes involved in the biosynthesis of isoprenoids and antioxidant stress are associated with the formation of non-functional nodules on Williams 82 roots. Moreover, our analysis implies that increased activity of genes involved in oxygen binding, amino acid transport, and nitrate transport differentiates between fully-developed nodules in cultivated versus wild soybeans.
Project description:Salt stress is a major agricultural concern inhibiting not only plant growth but also the symbiotic association between legume roots and the soil bacteria rhizobia. This symbiotic association is initiated by a molecular dialogue between the two partners, leading to the activation of a signaling cascade in the legume host and ultimately the formation of nitrogen-fixing root nodules. Here we show that a moderate salt stress increases the responsiveness of early symbiotic genes in Medicago truncatula to its symbiotic partner, Sinorhizobium meliloti, while conversely, inoculation with S. meliloti counteracts salt-regulated gene expression, restoring one-third to control levels. Our analysis of Early Nodulin 11 shows that salt-induced expression is dynamic, Nod-factor dependent, and requires the ionic, but not the osmotic, component of salt. We demonstrate that salt stimulation of rhizobium-induced gene expression requires NSP2, which functions as a node to integrate the abiotic and biotic signals. In addition, our work reveals that inoculation with Sinorhizobium meliloti succinoglycan mutants also hyperinduces ENOD11 expression in the presence or absence of salt, suggesting a possible link between rhizobial exopolysaccharide and the plant response to salt stress. Finally, we identify an accessory set of genes that are induced by rhizobium only under conditions of salt stress and have not been previously identified as being nodulation-related genes. Our data suggests that interplay of core nodulation genes with different accessory sets, specific for different abiotic conditions, function to establish the symbiosis. Together, our findings reveal a complex and dynamic interaction between plant, microbe, and environment.
Project description:Alnus glutinosa belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program and to identify new key plant genes that control nodulation during symbiosis in A. glutinosa. Symbiosis between A. glutinosa and Frankia was obtained after inoculation of young plant with a concentrated culture of the bacteria. Inoculation was performed in a medium depleted in nitrogen which favors the induction of nitrogen fixing symbiosis. For this study we considered two stages of symbiosis: - an early stage where inoculated roots were harvested 7 days after inoculation with the bacteria and compared to two controls (non-inoculated roots grown with or without nitrogen and harvested at the same time) - a late stage where nodules (nitrogen-fixing specific organs) were harvested 21 days after inoculation and compared to non-inoculated roots harvested on the day of inoculation (which is our reference time 0d). Three biological replicates were used for each condition.
Project description:Casuarina glauca belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program and to identify new key plant genes that control nodulation during symbiosis in C. glauca. Symbiosis between C. glauca and Frankia was obtained after inoculation of young plant with a concentrated culture of the bacteria. Inoculation was performed in a medium depleted in nitrogen which favors the induction of nitrogen fixing symbiosis. For this study we considered two stages of symbiosis: - an early stage where inoculated roots were harvested 7 days after inoculation with the bacteria and compared to two controls (non-inoculated roots grown with or without nitrogen and harvested at the same time) - a late stage where nodules (nitrogen-fixing specific organs) were harvested 21 days after inoculation and compared to non-inoculated roots harvested on the day of inoculation (which is our reference time 0d). Three biological replicates were used for each condition.