Project description:The non-receptor tyrosine kinase SRC is upregulated in various human cancers and plays crucial roles in cancer progression by promoting invasion and metastasis. We show that the transforming growth factor beta (TGF-β/SMAD pathway directly upregulates SRC during the epithelial-mesenchymal transition. In human epithelial MCF10A cells, TGF-β1 treatment markedly upregulated mRNA expression of SRC. Knockout of SMAD4 suppressed upregulation of SRC by TGF-β1. ChIP-sequencing analysis revealed that SRC was transcribed from the SRC1A promoter, which interacted with SMAD2 and SMAD4, in response to TGF-β1. These findings demonstrate that a direct interaction of the activated SMAD complex with the SRC1A promoter directly upregulates SRC and suggest that TGF-β contributes to SRC upregulation in the tumor microenvironment, where TGF-β-mediated tumor progression takes place.
Project description:Bovine articular chondrocytes were grown in micromass culture and were either untreated or treated with 5 ng TGF-b1/ml for 8 hours to identify genes regulated by TGF-b. Six total samples were analyzed. Three biological replicates of untreated bovine articular chondrocytes grown in micromass culture and three biological replicates of bovine articular chondrocytes grown in micromass culture and treated with 5ng TGF-b1/ ml for 8 hours.
Project description:TGF-betas have complex roles in tumorigenesis, with context-dependent effects that can either suppress or promote tumor progression. We have previously shown that TGF-beta has tumor suppressor activity in the MCF10Ca1h (M3) human breast cancer xenograft model. To identify potential molecular players in the tumor suppressor responses, we performed global gene expression analyses. To determine which genes were regulated by TGF-beta in this tumor model in vivo, we performed gene expression arrays on tumors derived from xenografts of M3 cells with and without expression of a dominant negative TGF-beta receptor to block activity of endogenous TGF-beta.
Project description:Bovine articular chondrocytes were grown in micromass culture and were either untreated or treated with 5 ng TGF-b1/ml for 8 hours to identify genes regulated by TGF-b.
Project description:<p>The mechanisms by which macrophage metabolism is regulated and the effects of metabolism on diseases remain largely unknown. We show here that TGF-β regulates the glycolysis of macrophages independently of inflammatory cytokine production, and thus affects the survival in experimental sepsis. Specifically, TGF-β increased expression and activity of phosphofructokinase-1 liver type (PFKL) in macrophages and thus promoted their glycolysis during cell activation, yet paradoxically suppressed the production of proinflammatory cytokines in the same macrophages. The upregulation of glycolysis was mediated by a mTOR-c-MYC dependent pathway, whereas the inhibition of cytokines was ascribed to the activation of SMAD3 and a downregulated activation of the pro-inflammatory transcription factors AP-1, NFkB and STAT1. Importantly, in an LPS-induced endotoxemia and CLP-sepsis models, TGF-β enhancement of macrophage glycolysis led to a decreased survival in mice, which was associated with increased blood coagulation. Analysis of cohorts of patients with sepsis and covid-19 revealed that the expression of PFKL, TGF-β receptor TGFBRI and coagulation factor F13A1 in myeloid cells positively correlated with the progression of the disease. Thus, TGF-β is emerging as a critical cytokine regulating macrophage metabolism and could serve as a therapeutic target in patients with sepsis.</p>
Project description:TGF-β signaling and its induced EMT (Epithelial to mesenchymal transition) play fundamental roles in development and disease including cancers. Although, TGF-β-regulated genes have been extensively studied, with RNA-sequencing (RNA-seq) analysis, new TGF-β-regulated genes are still been identified. Moreover, many significantly regulated genes by TGF-β are not emphasized. This study employs RNA-seq on MCF10A cells treated by TGF-β for 1.5 (this GEO), 24, 48, and 72 (GSE74377) hours and aims to identify novel TGF-β-regulated genes. With 1.5 fold gene expression change (log2 0.58) and p<0.05 at any length of the treatment, 1166 and 861 genes were found to be upregulated and downregulated by TGF-β, respectively. These genes were analyzed for their enrichments in KEGG pathways and prognostic markers of cancers. Several genes of interest were further analyzed for their regulation by TGF-β across cell lines and their functions in context of TGF-β were further studied. This study systematically analyzed TGF-β-regulated genes and revealed novel factors mediating the pro-migratory role of TGF-β signaling, hence, sheds a light on the understanding of the mechanisms underlying the role of TGF-β signaling in cancer development.
Project description:Advanced ovarian cancer is the most lethal gynecologic malignancy in the United States. Ovarian cancer cells are known to have diminished response to TGF-beta, but it remains unclear whether TGF-beta can modulate ovarian cancer cell growth in an indirect manner through cancer-associated fibroblasts (CAFs). Using transcriptome profiling analyses on TGF-beta-treated ovarian fibroblasts, we identified a TGF-beta-responsive gene signature in ovarian fibroblasts. Identifying TGF-beta-regulated genes in the ovarian microenvironment helps in understanding the role of TGF-beta in ovarian cancer progression. The human telomerase-immortalized ovarian fibroblast line NOF151 was treated with 5ng/mL of either TGF-beta-1 or TGF-beta-2. Total RNA was isolated from control samples and TGF-beta-treated fibroblasts samples at 48 hours post-treatment, followed by cDNA synthesis, IVT and biotin labeling. Samples were then hybridized onto Affymetrix Human Genome U133 Plus 2.0 microarrays. For each treatment group, three independent samples were prepared for the microarray experiment.
Project description:Advanced ovarian cancer is the most lethal gynecologic malignancy in the United States. Ovarian cancer cells are known to have diminished response to TGF-beta, but it remains unclear whether TGF-beta can modulate ovarian cancer cell growth in an indirect manner through cancer-associated fibroblasts (CAFs). Using transcriptome profiling analyses on TGF-beta-treated ovarian fibroblasts, we identified a TGF-beta-responsive gene signature in ovarian fibroblasts. Identifying TGF-beta-regulated genes in the ovarian microenvironment helps in understanding the role of TGF-beta in ovarian cancer progression.
Project description:To identify TGF-β regulated lncRNAs in glioblastoma, we performed a genome-wide microarray screen in T98G glioma cells. T98G cells were treated with 10 ng/ml TGF-β (24h) and differentially expressed lncRNAs were identified using microarray in comparison with control cells.