Project description:Mefs were transduced with Oct4 , Sox2, Klf4 and c-myc to induce pluripotency. The histone H3 K4 and H3 K27 trimethylation status was compared genome wide in ES cells, MEFs, and induced pluripotent cells (iPS). Keywords: ChIP-Chip
Project description:Embryonic stem (ES) cells have the ability to differentiate into all the cell types of the adult organism. This unusual property has been proposed to emanate from a particular chromatin environment that simultaneously contains both H3K4 and H3K27 trimethylation marks at the regulatory regions of the developmental genes, which are thus poised for activation during differentiation following resolution of these “bivalent domains.” Our work identifies Lysine Specific Demethylase 1 (LSD1/AOF2/KDM1A) as a key histone modifier in the maintenance of pluripotency. We show that the knock-down of LSD1 causes the differentiation of human ES cells and the induction of key endo- and mesodermal genes marked with bivalent domains. This induction correlates with an increase in the levels of H3K4 methylation at the regulatory regions of these genes. ChIP on chip analysis reveals that in human ES cells LSD1 preferentially occupies the promoters of a subset of developmental genes that contain bivalent domains that are also occupied by OCT4 and NANOG. We conclude that LSD1 contributes to maintain a subset of developmental genes in human ES in a silenced state by maintaining the critical balance between H3K4 and H3K27 methylation at the regulatory regions of these genes.
Project description:The histone variant H2A.Z has been implicated in nucleosome exchange, transcriptional activation and Polycomb repression. However, the relationships among these seemingly disparate functions remain obscure. We mapped H2A.Z genome-wide in mammalian ES cells and neural progenitors. H2A.Z is deposited promiscuously at promoters and enhancers, and correlates strongly with H3K4 methylation. Accordingly, H2A.Z is present at poised promoters with bivalent chromatin and at active promoters with H3K4 methylation, but is absent from stably repressed promoters that are specifically enriched for H3K27 trimethylation. We also characterized post-translational modification states of H2A.Z, including a novel species dually-modified by ubiquitination and acetylation that is enriched at bivalent chromatin. Our findings associate H2A.Z with functionally distinct genomic elements, and suggest that post-translational modifications may reconcile its contrasting locations and roles. Examination of histone variant, histone modifications and transcription machinery in 3 cell types
Project description:Human embryonic stem (HUES) cells are derived from early individual embryos with unique genetic properties. However, how their epigenetic status might affect their potential to differentiate toward specific lineages remains a puzzling question. Using ChIP-on-chip, the status of bivalent domains on gene promoters (i.e. H3K4 and H3K27 trimethylation) was monitored for both undifferentiated and BMP2 induced cardiac committed cells. A marked difference in the epigenetic profile of HUES cell lines was observed and this was correlated to the pattern of gene expression induced by BMP2 as well as to their potential to generate cardiac progenitors and differentiated myocytes. Thus, the epigenetic H3trimeK4 and H3trimeK27 prints generating bivalent domains on promoters, could be used to predict a preference in their differentiation toward a specific lineage. Using ChIP-on-chip, the status of bivalent domains on gene promoters (i.e. H3K4 and H3K27 trimethylation) was monitored for both undifferentiated and BMP2 induced cardiac committed cells.
Project description:Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II A common landmark of activated genes is the presence of trimethylation on lysine 4 of histone H3 (H3K4) at promoter regions. The Set1/COMPASS was the founding member and the only H3K4 methylases in S. cerevisiae, however, in mammals at least six H3K4 methylases Set1A/B and MLL1-4 are found in COMPASS-like complexes capable of methylating H3K4. To gain further insight into the different roles and functional targets for the H3K4 methylases, we have undertaken a genome-wide analysis of H3K4 methylation pattern in wild-type Mll1+/+ and Mll1-/- mouse fibroblasts (MEFs). We found that Mll1 is required for the H3K4 trimethylation of less than 5% of promoters carrying this modification. Many of these genes, which include developmental regulators such as Hox genes show decreased levels of RNA polymerase II recruitment and expression concomitant with the loss of H3K4 methylation. Although Mll1 is only required for the methylation of a subset of Hox genes, Menin, a component of the Mll1 and Mll2 complexes, is required for the overwhelming majority of H3K4 methylation at Hox loci. However, the loss of MLL3/4 and/or the Set1 complexes have little to no effect on the Hox loci H3K4 methylation or expression levels in these MEFs. Together these data provide insight into redundancy and specialization of COMPASS-like complexes in mammals and provide evidence on a possible role for Mll1-mediated H3K4 methylation in the regulation of transcriptional initiation. Chromatin Immunoprecipitation was performed with antibodies for histone 3 lysine 4 trimethylation, histone 3, and PolII in Mll1+/+ and Mll1-/- mouse embryonic fibroblasts. DNA was hybridized to a custom Agilent tiling array (4x44k format) that covers three of the hox regions (A,B,D) and a collection of other genes.
Project description:We used chromatin immunoprecipitation-coupled to deep sequencing (ChIP-seq) to profile genome-wide locations of H3K4 trimethylation (H3K4me3) and H3K27 trimethylation (H3K27me3) epigenetic marks in SATB1-depleted MDA-MB-231 aggressive breast cells.