Project description:JC virus (JCV) is a ubiquitous human polyomavirus that causes the demyelinating disease Progressive Multifocal Leukoencephalopathy (PML). JCV replicates in limited cell types in culture, predominantly in human glial cells. Thus, productive JCV infection is an indicator of the host cell transcription environment. Following introduction of a replication defective SV40 mutant that expressed large T protein into a heterogeneous culture of human fetal brain cells, multiple phenotypes became immortalized (SVG cells). A subset of SVG cells could support JCV replication. This mixed culture was called SVG cells. In the current study, clonal cell lines were selected from the original SVG cell culture. The SVG-5F4 clone showed low levels of viral growth. The SVG-10B1 clone was highly permissive for JCV DNA replication and gene expression. Microarray analysis revealed that viral infection did not significantly change gene expression in these cells. More resistant 5F4 cells expressed high levels of transcription factors known to inhibit JCV transcription. Interestingly, 5F4 cells highly expressed RNA of markers of Bergman or radial glia and 10B1 cells had high expression of markers of immature glial cells and activation of transcription regulators important for stem/progenitor cell self-renewal. These SVG-derived clonal cell lines provide a biologically relevant model to investigate cell type differences in JCV host range and pathogenesis, as well as neural development. 13 Human samples: 3 SVG 10B1 clones 14 days post mock-infection, 3 SVG 10B1 clones 14 days post JCV Mad-4 strain infection, 3 SVG 5F4 clones 14 days post mock-infection, 4 SVG 5F4 clones 14 days post JCV Mad-4 strain infection.
Project description:SVGR2 cells are glial cells which are derived from SVG-A cells. They were created by subjecting SVG-A cells to multiple rounds of lytic infection by the human polyomavirus JCV. SVGR2 cells are the cells that survived this process and are resistant to JCV infection. This experiment was designed to identify gene expression differences that may be responsible for SVGR2 resistance to JCV. Experiment Overall Design: SVG-A and SVGR2 cells are transformed cell lines. To eliminate gene expression differences that may have occurred due to genetic instability of these cell lines three subclones of each of the cell lines were created and used as a triplicate in the comparison. Total RNA was extracted from cells that had been left at 100% confluency for one day using the Qiagen RNeasy kit. cDNA was hybridized to the Affymetrix Human GeneChips U133A or U133B according to Affymetrix gudielines.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:JC virus (JCV) is a ubiquitous human polyomavirus that causes the demyelinating disease Progressive Multifocal Leukoencephalopathy (PML). JCV replicates in limited cell types in culture, predominantly in human glial cells. Thus, productive JCV infection is an indicator of the host cell transcription environment. Following introduction of a replication defective SV40 mutant that expressed large T protein into a heterogeneous culture of human fetal brain cells, multiple phenotypes became immortalized (SVG cells). A subset of SVG cells could support JCV replication. This mixed culture was called SVG cells. In the current study, clonal cell lines were selected from the original SVG cell culture. The SVG-5F4 clone showed low levels of viral growth. The SVG-10B1 clone was highly permissive for JCV DNA replication and gene expression. Microarray analysis revealed that viral infection did not significantly change gene expression in these cells. More resistant 5F4 cells expressed high levels of transcription factors known to inhibit JCV transcription. Interestingly, 5F4 cells highly expressed RNA of markers of Bergman or radial glia and 10B1 cells had high expression of markers of immature glial cells and activation of transcription regulators important for stem/progenitor cell self-renewal. These SVG-derived clonal cell lines provide a biologically relevant model to investigate cell type differences in JCV host range and pathogenesis, as well as neural development.
Project description:SVGR2 cells are glial cells which are derived from SVG-A cells. They were created by subjecting SVG-A cells to multiple rounds of lytic infection by the human polyomavirus JCV. SVGR2 cells are the cells that survived this process and are resistant to JCV infection. This experiment was designed to identify gene expression differences that may be responsible for SVGR2 resistance to JCV. Keywords: Cell type
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6
Project description:Comparison of temporal gene expression profiles to identify genes/pathways changing during ageing. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.