Project description:Transcriptional profiling of populations in the clam Ruditapes decussatus determined differentiation in gene-expression along parallel temperature gradients and between races of the Atlantic Ocean and West Mediterranean sea.
Project description:To characterize the taxonomic and functional diversity of biofilms on plastics in marine environments, plastic pellets (PE and PS, ø 3mm) and wooden pellets (as organic control) were incubated at three stations: at the Baltic Sea coast in Heiligendamm (coast), in a dead branch of the river Warnow in Warnemünde (inlet), and in the Warnow estuary (estuary). After two weeks of incubation, all pellets were frozen for subsequent metagenome sequencing and metaproteomic analysis. Biofilm communities in the samples were compared on multiple levels: a) between the two plastic materials, b) between the individual incubation sites, and c) between the plastic materials and the wooden control. Using a semiquantitative approach, we established metaproteome profiles, which reflect the dominant taxonomic groups as well as abundant metabolic functions in the respective samples.
Project description:Bacteria isolated from diverse environments were found to sense blue light to regulate their biological functions. However, this ability of deep-sea bacteria has been studied rarely. In this study, we found serendipitously that blue light stimulated excess zero-valent sulfur (ZVS) production of E. flavus 21-3, which was isolated from the deep-sea cold seep and possessed a novel thiosulfate oxidation pathway. Its ZVS production responding to the blue light was mediated by a light-oxygen-voltage histidine kinase (LOV-1477), a diguanylate cyclase (DGC-2902), a PilZ protein (mPilZ-1753) and the key thiosulfate dehydrogenase (TsdA) in its thiosulfate oxidation pathway. Subsequently, the thiosulfohydrolase (SoxB-277) was found working with another SoxB (SoxB-285) and being as substitute for each other to generate ZVS. This study provided an example of deep-sea bacteria sensing blue light to regulate thiosulfate oxidation. Deep-sea blue light potentially helped these blue-light-sensing bacteria adapt harsh conditions by diversifying their biological processes.