Project description:RNA-guided endonucleases form the crux of diverse biological processes and technologies, including adaptive immunity, transposition, and genome editing. Some of these enzymes are components of insertion sequences (IS) in the IS200/IS605 and IS607 transposon families. Both IS families encode a TnpA transposase and TnpB nuclease, an RNA-guided enzyme ancestral to CRISPR-Cas12. In eukaryotes and their viruses, TnpB homologs occur as two distinct types, Fanzor1 and Fanzor2. We analyzed the evolutionary relationships between prokaryotic TnpBs and eukaryotic Fanzors, revealing that a clade of IS607 TnpBs with unusual active site arrangement found primarily in cyanobacteria likely gave rise to both types of Fanzors. The widespread nature of Fanzors imply that the properties of this particular group of IS607 TnpBs were particularly suited to adaptation and evolution in eukaryotes and their viruses. Biochemical analysis of a prokaryotic IS607 TnpB and virally encoded Fanzor1s revealed features that may have fostered co-evolution between TnpBs/Fanzors and their cognate transposases. These results provide insight into the evolutionary origins of a ubiquitous family of RNA-guided proteins that shows remarkable conservation across the three domains of life.
2023-11-18 | GSE246134 | GEO
Project description:Complete assembly of a eukaryotic chromosome in vitro using programmable DNA-guided nicking endonucleases
Project description:TnpB nucleases represent the evolutionary precursors to CRISPR-Cas12 and are widespread in all domains of life. IS605-family TnpB homologs function in bacteria as programmable RNA-guided homing endonucleases driving transposon maintenance through DSB-stimulated homologous recombination. Here we uncover molecular mechanisms of transposition lifecycle of IS607-family elements that, remarkably, also encode group I introns. We discover molecular features for a candidate ‘IStron’ from Clostridium botulinum that allow the element to carefully control the relative levels of spliced products versus functional guide RNAs. Our results suggest that IStron transcripts have evolved a sensitive equilibrium to balance competing and mutually exclusive activities that promote transposon maintenance while limiting adverse fitness costs on the host. Collectively, this work highlights molecular innovation in the multi-functional utility of transposon-encoded noncoding RNAs.
Project description:TnpB nucleases represent the evolutionary precursors to CRISPR-Cas12 and are widespread in all domains of life. IS605-family TnpB homologs function in bacteria as programmable RNA-guided homing endonucleases driving transposon maintenance through DSB-stimulated homologous recombination. Here we uncover molecular mechanisms of transposition lifecycle of IS607-family elements that, remarkably, also encode group I introns. We discover molecular features for a candidate ‘IStron’ from Clostridium botulinum that allow the element to carefully control the relative levels of spliced products versus functional guide RNAs. Our results suggest that IStron transcripts have evolved a sensitive equilibrium to balance competing and mutually exclusive activities that promote transposon maintenance while limiting adverse fitness costs on the host. Collectively, this work highlights molecular innovation in the multi-functional utility of transposon-encoded noncoding RNAs.
Project description:In many eukaryotes, Argonaute proteins, guided by short RNA sequences, defend cells against transposons and viruses. In the eubacterium Thermus thermophilus, the DNA-guided Argonaute TtAgo defends against transformation by DNA plasmids. Here, we report that TtAgo also participates in DNA replication. In vivo, TtAgo binds 15-18 nt DNA guides derived from the chromosomal region where replication terminates and associates with proteins known to act in DNA replication. When gyrase, the sole T. thermophilus type II topoisomerase, is inhibited, TtAgo allows the bacterium to finish replicating its circular genome. In contrast, loss of both gyrase and TtAgo activity slows growth and produces long sausage-like filaments in which the individual bacteria are linked by DNA. Finally, wild-type T. thermophilus outcompetes an otherwise isogenic strain lacking TtAgo. We propose that the primary role of TtAgo is to help T. thermophilus disentangle the catenated circular chromosomes generated by DNA replication.
2020-03-17 | MSV000085109 | MassIVE
Project description:Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases
Project description:Transposon-encoded tnpB and iscB genes encode RNA-guided DNA nucleases that promote their own selfish spread through targeted DNA cleavage and homologous recombination. These widespread gene families were repeatedly domesticated over evolutionary timescales, leading to the emergence of diverse CRISPR-associated nucleases including Cas9 and Cas12. We set out to test the hypothesis that TnpB nucleases may have also been repurposed for novel, unexpected functions other than CRISPR-Cas. Here, using phylogenetics, structural predictions, comparative genomics, and functional assays, we uncover multiple instances of programmable transcription factors that we name TnpB-like nuclease-dead repressors (TldR). These proteins employ naturally occurring guide RNAs to specifically target conserved promoter regions of the genome, leading to potent gene repression in a mechanism akin to CRISPRi technologies invented by humans. Focusing on a TldR clade found broadly in Enterobacteriaceae, we discover that bacteriophages exploit the combined action of TldR and an adjacently encoded phage gene to alter the expression and composition of the host flagellar assembly, a transformation with the potential to impact motility, phage susceptibility, and host immunity. Collectively, this work showcases the diverse molecular innovations that were enabled through repeated exaptation of transposon-encoded genes, and reveals the evolutionary trajectory of diverse RNA-guided transcription factors.
Project description:The development of CRISPR-Cas systems for targeting DNA and RNA in diverse organisms has transformed biotechnology and biological research. Moreover, the CRISPR revolution has highlighted bacterial adaptive immune systems as a rich and largely unexplored frontier for discovery of new genome engineering technologies. In particular, the class 2 CRISPR-Cas systems, which use single RNA-guided DNA-targeting nucleases such as Cas9, have been widely applied for targeting DNA sequences in eukaryotic genomes. Here, we report DNA-targeting and transcriptional control with class I CRISPR-Cas systems. Specifically, we repurpose the effector complex from type I variants of class 1 CRISPR-Cas systems, the most prevalent CRISPR loci in nature, that target DNA via a multi-component RNA-guided complex termed Cascade. We validate Cascade expression, complex formation, and nuclear localization in human cells and demonstrate programmable CRISPR RNA (crRNA)-mediated targeting of specific loci in the human genome. By tethering transactivation domains to Cascade, we modulate the expression of targeted chromosomal genes in both human cells and plants. This study expands the toolbox for engineering eukaryotic genomes and establishes Cascade as a novel CRISPR-based technology for targeted eukaryotic gene regulation.