Project description:Several groups have shown that through evolution experiments, tolerance and resistance evolved rapidly under cyclic antibiotic treatment. In other words, intermittent antibiotic exposure performed in a typical adaptive laboratory evolution (ALE) experiments will “train” the bacteria to become tolerant/resistant to the drug. Using this experimental strategy, we performed in vitro laboratory evolution in MRSA using daptomycin, and mine novel daptomycin tolerance and resistance mutants, which were isolated at specific time points during the evolution experiments. Three daptomycin-tolerant isolates with different tolerance level were generated from our laboratory evolution (TOL2 and TOL5 with a mild-tolerance phenotype, and TOL6 with a high-tolerance phenotype). They all bear mutations at different genes, and have no increase in MIC towards daptomycin. Besides, we also isolated three daptomycin-resistant isolates (RES1, RES2, RES3) that have a single point mutation in the same gene, mprF, but at different locations, leading to an increased MIC towards daptomycin. Through proteomics, we uncovered the differential adaptation strategies of these daptomycin tolerant and resistant MRSA strains, and how they respond differently to antibiotics compared to the ancestral wild-type.
Project description:Mutants from SG511 and NCTC8325 (wild type isolates) resistant to daptomycin were obtained following serial passage experiments in vitro. Transcriptomic experiments showed alteration in the expression of genes involved in various pathways including general metabolism, cell wall regulon and lipid metabolism. Microarray was used to evaluate alteration in the transcriptome between wild type strains SG511 and NCTC8325 and their daptomycin resistant isolates, in antibiotic-free medium.
Project description:The emergence of multi-drug resistant pathogens is a major public health problem, leading to rethink and innovate in our bacterial control strategies. Here, we explore the anti-biofilm and anti-virulence activities of nineteen 6-polyaminosterol derivatives (squalamine-based), presenting a modulation of their polyamine side chain, on 4 major pathogens, i.e. carbapenem-resistant A. baumannii (CRAB) and P. aeruginosa (CRPA), a methicillin-resistant S. aureus (MRSA) and a vancomycin-resistant E. faecium (VRE) strains. We screened the effect of these derivatives on biofilm formation and eradication. 4e (for CRAB, VRE and MRSA) and 4f (for all the strains) were the most potent one and displayed activities as good as conventional antibiotics. We also identified 11 compounds able to decrease by more than 40% the production of pyocyanin, a major virulence factor of P. aeruginosa. We demonstrated that 4f treatment acts against bacterial infections in Galleria mellonella and significantly prolonged the larvae survival (from 50% to 80%) after 24 h of CRAB, VRE and MRSA infections. As shown by proteomic studies, 4f triggered distinct cellular responses depending on the bacterial species, but essentially related to the cell envelop. Its interesting anti-biofilm and anti-virulence properties make it promising candidate for use in therapeutics.
Project description:Transcriptional response of Bacillus subtilis to daptomycin in wild-type and in a daptomycin resistant mutant. Bacillus subtilis 168, WT (-DAP) vs. DapR1 (-DAP), WT (+DAP) vs. DapR1 (+DAP), DapR1 (+DAP) vs. DapR1 (-DAP). Each experiment was conducted at least twice using two independent total RNA preparations. For daptomycin untreated comparison between 168 WT and DapR1 mutant, DapR1 was labeled with Alexa Fluor 647 and WT was labeled with Alexa Fluor 555. For daptomycin treated experiments between WT and DapR1, DapR1 was labeled with Alexa Fluor 647 and WT with Alexa Fluor 555. For treated vs. untreated DapR1, the DAP treated samples were labeled with Alexa Fluor 647 and the untreated with Alexa Fluor 555. For dye swap, untreated DapR1 was labeled with Alexa Fluor 647 and DAP treated with Alexa Fluor 555.
Project description:Daptomycin is an extensively used anti-staphylococcal agent due to the rise in methicillin-resistant Staphylococcus aureus. However, both laboratory-derived and clinical decreased susceptibility isolates have been described, but the mechanism(s) of resistance is poorly understood. To further understand daptomycin resistance, comparative genome sequencing, transcriptomics, ultrastructure ,and cell envelope studies were carried out on two relatively higher level (4 and 8 ug/ml-1) laboratory-derived daptomycin-resistant strains (strains CB1541 and CB1540 respectively) compared to their methicillin-resistant parent strain (CB1118;MW2). Genes altered in their expression common to both transcriptomes included some involved in glycine betaine accumulation, mscL, ure genes, femH, spa and smpB. However, the CB1541 transcriptome was further characterized by upregulation of various heat shock chaperone and protease genes, consistent with a mutation in clpP, and lytM and sceD. Both strains showed slow growth, and strongly decreased autolytic activity that appeared to be mainly due to decreased autolysin production. In contrast to previous common findings, we did not find any mutations in phospholipid biosynthesis genes, and it appears there are multiple pathways to and factors in daptomycin resistance.