Project description:Diosmetin inhibits cells growth and proliferation by regulating cell cycle and lipid metabolism pathway in hepatocellular carcinoma
| PRJNA744624 | ENA
Project description:Tenuigenin inhibits the cell growth and proliferation by regulating the cell cycle and central carbon metabolism in cancer pathway in hepatocellular carcinoma
Project description:Exposure to hypoxia disrupts energy metabolism and induces inflammation. However, the pathways and mechanisms underlying energy metabolism disorders caused by hypoxic conditions remain unclear. In this study, we constructed a hypoxic animal model and applied transcriptomic and non-targeted metabolomics techniques to further investigate the pathways and mechanisms of hypoxia exposure that disrupt energy metabolism. Transcriptome results showed that 3007 genes were significantly differentially expressed under hypoxic exposure, and Gene Ontology (GO) annotation analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis showed that the differentially expressed genes (DEGs) were mainly involved in energy metabolism and were significantly enriched in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathway. Differential genes in the TCA cycle (IDH3A, SUCLA2, and MDH2) and OXPHOS pathway (NDUFA3, NDUFS7, UQCRC1, CYC1, and UQCRFS1) were validated using mRNA and protein expression, and the results showed downregulation. The results of non-targeted metabolomics showed that 365 significant differential metabolites were identified under plateau hypoxia stress. KEGG enrichment analysis showed that the differential metabolites were mainly enriched in metabolic processes, such as energy metabolism, nucleotide metabolism, and amino acid metabolism. Hypoxia exposure disrupted the TCA cycle and reduced the synthesis of amino acids and nucleotides by decreasing the concentrations of cis-aconitate, α-ketoglutarate, NADH, NADPH, most amino acids, purines, and pyrimidines. Bioinformatics analysis was used to identify inflammatory genes related to hypoxia exposure, and some inflammatory genes were selected for verification. We found that the mRNA and protein expression levels of IL1B, IL12B, S100A8, and S100A9 in kidney tissues were upregulated under hypoxic exposure. Our results suggest that hypoxia exposure inhibits the TCA cycle and OXPHOS signalling pathway by inhibiting IDH3A, SUCLA2, MDH2, NDUFFA3, NDUFS7, UQCRC1, CYC1, and UQCRFS1, thereby suppressing energy metabolism, inducing amino acid and nucleotide deficiency, and promoting inflammation, ultimately leading to kidney damage.
Project description:Our RNA sequencing analysis revealed that the JIB-04 treatment altered the expression of genes that are involved in the cell cycle, p53 signaling pathway, and apoptosis, and are also related to several cancers including hepatocellular carcinoma. JIB-04 also altered the expression of genes involved in various signaling pathways such as the FoxO signaling pathway, the PI3K-Akt signaling pathway, which is crucial for the proliferation and maintenance of hepatocellular carcinoma cells.
Project description:The tricarboxylic acid (TCA) cycle is a central hub of cellular metabolism, oxidizing nutrients to generate reducing equivalents for energy production and critical metabolites for biosynthetic reactions. Despite the importance of the products of the TCA cycle for cell viability and proliferation, mammalian cells display diversity in TCA-cycle activity. How this diversity is achieved, and whether it is critical for establishing cell fate, remains poorly understood. Here we identify a non-canonical TCA cycle that is required for changes in cell state. Genetic co-essentiality mapping revealed a cluster of genes that is sufficient to compose a biochemical alternative to the canonical TCA cycle, wherein mitochondrially derived citrate exported to the cytoplasm is metabolized by ATP citrate lyase, ultimately regenerating mitochondrial oxaloacetate to complete this non-canonical TCA cycle. Manipulating the expression of ATP citrate lyase or the canonical TCA-cycle enzyme aconitase 2 in mouse myoblasts and embryonic stem cells revealed that changes in the configuration of the TCA cycle accompany cell fate transitions. During exit from pluripotency, embryonic stem cells switch from canonical to non-canonical TCA-cycle metabolism. Accordingly, blocking the non-canonical TCA cycle prevents cells from exiting pluripotency. These results establish a context-dependent alternative to the traditional TCA cycle and reveal that appropriate TCA-cycle engagement is required for changes in cell state.
Project description:Hepatocellular carcinoma (HCC) ranks worldwide as one of the most lethal cancers. In spite of the vast existing knowledge about HCC, the pathogenesis of HCC is not completely understood. Discovery of novel genes which contribute to HCC pathogenesis will provide new insights for better understanding and treating HCC. The relatively obscure gene midnolin has been studied for over two decades; however, its biological roles are largely unknown. Our study is the first to demonstrate the functional significance of midnolin in HCC/cancer: Midnolin expression correlates with poor prognosis in HCC patients, and suppression of midnolin severely inhibits tumorigenicity of HCC cells in vitro and in mice and disrupts retinoic acid/lipid metabolism in these cells.
Project description:New antimalarial drugs are urgently needed to control drug resistant forms of the malaria parasite, Plasmodium falciparum. Although mitochondrial metabolism is the target of both existing drugs and new lead compounds, the role of the mitochondrial tricarboxylic acid (TCA) cycle remains poorly understood. Herein, we describe 11 genetic knockout parasite lines that delete six of the eight TCA cycle enzymes. Although all TCA knockouts grew normally in asexual blood stages, these metabolic deficiencies halted lifecycle progression in later stages. Specifically, aconitase knockout parasites arrested as late gametocytes, whereas α-ketoglutarate dehydrogenase deficient parasites failed to develop oocysts in the mosquitoes. Mass-spectrometry analysis of 13C isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development . Two parallel timecourses resulting in a total of 16 samples (8 wildtype, Isocitrate Dehydrogenase/alpha-Ketogluterate Dehydrogenase double knockout) were hybridized against a Cy3-labeled reference pool of 3D7 mixed stage parasites on a two-color array.