Project description:To explore the bacterial community profile of the gut of the African palm weevil and to identify the abundance and diversity of lignin degradation-associated bacteria in each gut segment.
Project description:The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess changes to both bacterial community structure and transcriptional activity in a mouse model of colitis. Gene families involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase, were transcriptionally up-regulated in colitis, implicating a role for increased oxygen tension in gut microbiota modulation. Transcriptional profiling of the host gut tissue and host RNA in the gut lumen revealed a marked increase in the transcription of genes with an activated macrophage and granulocyte signature, suggesting the involvement of these cell types in influencing microbial gene expression. Down-regulation of host glycosylation genes further supports a role for inflammation-driven changes to the gut niche that may impact the microbiome. We propose that members of the bacterial community react to inflammation-associated increased oxygen tension by inducing genes involved in oxidative stress resistance. Furthermore, correlated transcriptional responses between host glycosylation and bacterial glycan utilisation support a role for altered usage of host-derived carbohydrates in colitis. Complementary transcription profiling data from the mouse hosts have also been deposited at ArrayExpress under accession number E-MTAB-3590 ( http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3590/ ).
Project description:MAF from pika Epas1-3FLAG knock-in mice were extracted and immortalized. After 12h DMOG treatment, cells were conducted for the ChIP-seq (Bmal1,Flag). We found that in knock-in mice fibroblasts, EPAS1-3FLAG can bind to similar E-box locus compared with BMAL1. Fibroblasts from mouse, rat, rabbit and Tibetan pika were extracted (and Tibetan pika fibroblasts were immortalized). RNA was extracted at 90% confluency. We found that Per2 mRNA level was significantly lower in Tibetan pika fibroblasts compared with other species.
Project description:The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess changes to both bacterial community structure and transcriptional activity in a mouse model of colitis. Gene families involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase, were transcriptionally up-regulated in colitis, implicating a role for increased oxygen tension in gut microbiota modulation. Transcriptional profiling of the host gut tissue and host RNA in the gut lumen revealed a marked increase in the transcription of genes with an activated macrophage and granulocyte signature, suggesting the involvement of these cell types in influencing microbial gene expression. Down-regulation of host glycosylation genes further supports a role for inflammation-driven changes to the gut niche that may impact the microbiome. We propose that members of the bacterial community react to inflammation-associated increased oxygen tension by inducing genes involved in oxidative stress resistance. Furthermore, correlated transcriptional responses between host glycosylation and bacterial glycan utilisation support a role for altered usage of host-derived carbohydrates in colitis. Complementary RNA-seq and DNA-seq data sets of the microbiome from this study have also been deposited at ArrayExpress under accession number E-MTAB-3562 ( http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3562/ ).
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:HIV is known to severely affect the gastrointestinal immune system, in particular compartments of immunity that regulate gut microbial composition. Furthermore, recent studies in mice have shown that dysregulation of the gut microbiome can contribute to chronic inflammation, which is a hallmark of HIV and is thought to fuel disease progression. We sought to understand whether the gut microbial community differs in HIV-infected subjects, and whether such putative differences are associated with disease progression. We found that dysbiosis in the gut mucosally-adherent bacterial community associates with markers of chronic inflammation and disease progression in HIV-infected subjects, and this dysbiosis remains in many subjects undergiong antiretroviral therapy.
Project description:HIV is known to severely affect the gastrointestinal immune system, in particular compartments of immunity that regulate gut microbial composition. Furthermore, recent studies in mice have shown that dysregulation of the gut microbiome can contribute to chronic inflammation, which is a hallmark of HIV and is thought to fuel disease progression. We sought to understand whether the gut microbial community differs in HIV-infected subjects, and whether such putative differences are associated with disease progression. We found that dysbiosis in the gut mucosally-adherent bacterial community associates with markers of chronic inflammation and disease progression in HIV-infected subjects, and this dysbiosis remains in many subjects undergiong antiretroviral therapy. We used G3 PhyloChip microarrays (commercially available from Second Genome, Inc.) to profile gut bacteria in rectosigmoid biopsies from 32 subjects: 6 HIV-infected viremic untreated (VU), 18 HIV-infected subjects on highly active antiretroviral therapy (HAART), 1 HIV-infected long-term non-progressor that is untreated (LTNP), and 9 HIV-uninfected subjects (HIV-).
Project description:Background: Germ-free or axenic organisms are valuable tools for studying immunity, digestion, and development in different hosts. Although most of these studies have been conducted on mice, recently, germ-free invertebrate models (e.g. Drosophila and Apis) are used due to their easy husbandry, low cost for production, maintenance and the high number of individuals per generation they produce. However, a limitation of using these insects is the simple bacterial community present in their guts. The gut of the American cockroach Periplaneta americana displays a complex gut bacterial community composed of hundreds of species. Using P. americana, we developed a germ-free omnivorous invertebrate model to investigate how gut bacteria stimulate and shape normal gut development and metabolism. To determine if the insect host is directly affected by the presence of specific members of their bacterial community, gnotobiotic cockroaches were generated by inoculating a set of various P. americana gut-endemic Gram-negative (Bacteroidetes; n=11) and Gram-positive (Firmicutes; n=2) bacterial strains into germ-free insects. Additionally, we were able to recover the ‘normal’ bacterial-induced gut phenotype by co-housing germ-free cockroaches with wildtype P. americana to produce gut-bacteria conventionalized insects. Changes in gene expression profiles from two distinct regions (midgut and hindgut) of P. americana guts were quantified by RNA-Seq analysis of the germfree, gnotobiotic and conventionalized insects. Basic transcriptomics description: High-resolution transcriptome profiling of germ-free, gnotobiotic, and conventionalized treated P. americana midgut and hindguts. Ca. 43 million reads were obtained for each treatment. A de-novo assembly of all sequence reads was performed by Trinity assembler. Transcriptome assembly yielded 369,082 gene models and 554,155 isoforms. After running Trinotate pipeline, 65,047 (12 %) these transcripts matched an annotated product in at least one of the reference databases used (Uniprot, pfam, KEGG, COG). Additionally, 1,008 putative bacterial genes were annotated in the P. americana genome and ultimately excluded from these analyses. After bacteria decontamination, 553,147 assembled isoforms were used for transcript quantification and differential expression analysis using the DESeq2 pipeline. DESeq2 analysis detected 6,730 and 3,958 differentially expressed transcripts among the germ-free, gnotobiotic and conventionalized treatments in P. americana hindgut and midgut, respectively.
Project description:Genome scale metabolic model of Drosophila gut microbe Acetobacter fabarum
Abstract -
An important goal for many nutrition-based microbiome studies is to identify the metabolic function of microbes in complex microbial communities and their impact on host physiology. This research can be confounded by poorly understood effects of community composition and host diet on the metabolic traits of individual taxa. Here, we investigated these multiway interactions by constructing and analyzing metabolic models comprising every combination of five bacterial members of the Drosophila gut microbiome (from single taxa to the five-member community of Acetobacter and Lactobacillus species) under three nutrient regimes. We show that the metabolic function of Drosophila gut bacteria is dynamic, influenced by community composition, and responsive to dietary modulation. Furthermore, we show that ecological interactions such as competition and mutualism identified from the growth patterns of gut bacteria are underlain by a diversity of metabolic interactions, and show that the bacteria tend to compete for amino acids and B vitamins more frequently than for carbon sources. Our results reveal that, in addition to fermentation products such as acetate, intermediates of the tricarboxylic acid (TCA) cycle, including 2-oxoglutarate and succinate, are produced at high flux and cross-fed between bacterial taxa, suggesting important roles for TCA cycle intermediates in modulating Drosophila gut microbe interactions and the potential to influence host traits. These metabolic models provide specific predictions of the patterns of ecological and metabolic interactions among gut bacteria under different nutrient regimes, with potentially important consequences for overall community metabolic function and nutritional interactions with the host.IMPORTANCE Drosophila is an important model for microbiome research partly because of the low complexity of its mostly culturable gut microbiota. Our current understanding of how Drosophila interacts with its gut microbes and how these interactions influence host traits derives almost entirely from empirical studies that focus on individual microbial taxa or classes of metabolites. These studies have failed to capture fully the complexity of metabolic interactions that occur between host and microbe. To overcome this limitation, we reconstructed and analyzed 31 metabolic models for every combination of the five principal bacterial taxa in the gut microbiome of Drosophila This revealed that metabolic interactions between Drosophila gut bacterial taxa are highly dynamic and influenced by cooccurring bacteria and nutrient availability. Our results generate testable hypotheses about among-microbe ecological interactions in the Drosophila gut and the diversity of metabolites available to influence host traits.