Project description:The phytohormone GA controls multiple important developmental processes in plants such as germination, elongation growth and flowering time. In this experiment, we look for early GA response genes in 7 day-old light-grown Arabidopsis seedlings. To this end we compare four data sets: (1) a GA biosynthesis mutant ga-1 (SALK_109115) mock treated for 1 hr; (2) a GA biosynthesis mutant ga-1 (SALK_109115) treated for 1 hr with 100 µM GA3; (3) a gid1a-1 gid1b-1 gid1c-2 GA receptor triple mutant mock treated for 1 hr; (4) a gid1a-1 gid1b-1 gid1c-2 GA receptor triple mutant treated for 1 hr with 100 µM GA3. In a comparison of the two ga-1 samples, GA regulated genes can be identified, and the assumption is that bona fide GA regulated genes are not responding in the gid1a-1 gid1b-1 gid1c-2 GA receptor mutant. Keywords: phytohormone response
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with goniothalamin, highlighting to the physiological function of phytochemicals by observing early response of gene expressions in Arabidopsis seedlings.
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with cyanamid, highlighting to the physiological function of phytochemicals by observing early response of gene expressions in Arabidopsis seedlings
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with safranal, highlighting to the physiological function of plant volatile chemicals by observing early response of gene expressions in Arabidopsis seedlings.
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with auxin (indole-3-acetic acid), highlighting to the physiological function of auxin by observing early response of gene expressions in Arabidopsis seedlings.
Project description:This study aims to identify genes which help to understand similar underlying mechanism in the response to shade and wounding in Arabidopsis thaliana plants.
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with trans-2-hexenal, highlighting to the physiological function of plant volatile chemicals by observing early response of gene expressions in Arabidopsis seedlings.