Project description:The present study verified whether acyl-coenzyme A (acyl-CoA)-binding protein (ACBP) affected the production of Monascus pigments (MPs) in Monascus ruber CICC41233 (MrACBP). Phylogenetic analysis revealed that the cloned Mracbp gene, which encoded the MrACBP protein, exhibited the closest match (99% confidence level) to the gene from Penicilliopsis zonata. The MrACBP and maltose-binding protein (MBP) were simultaneously expressed in Escherichia coli Rosetta DE3 in the form of a fusion protein. The microscale thermophoresis binding assay revealed that the purified MBP-MrACBP exhibited a higher affinity for myristoyl-CoA (Kd = 88.16 nM) than for palmitoyl-CoA (Kd = 136.07 nM) and octanoyl-CoA (Kd = 270.9 nM). Further, the Mracbp gene was homologously overexpressed in M. ruber CICC41233, and a positive transformant M. ruber ACBP5 was isolated. The fatty acid myristic acid in M. ruber ACBP5 was lower than that in the parent strain M. ruber CICC41233. However, when compared with the parent strain, the production of total MPs, water-soluble pigment, and ethanol-soluble pigment in M. ruber ACBP5 increased by 11.67, 9.80, and 12.70%, respectively, after 6 days. The relative gene expression level, as determined by a quantitative real-time polymerase chain reaction analysis, of the key genes acbp, pks, mppr1, fasA, and fasB increased by 4.03-, 3.58-, 1.67-, 2.11-, and 2.62-fold after 6 days. These data demonstrate the binding preference of MrACBP for myristoyl-CoA, and its influence on MPs production.
Project description:Red mold rice (RMR) is a traditional Chinese medicine prepared using Monascus fermentation. Monascus ruber ( pilosus) and Monascus purpureus have a long history of use as food and medicine. As an economically important starter culture, the relationship between the taxonomy of Monascus and production capabilities of secondary metabolites is crucial for the Monascus food industry. In this study, monacolin K, monascin, ankaflavin, and citrinin production by M. purpureus and M. ruber were genomically and chemically investigated. Our findings suggest that M. purpureus can produce monascin and ankaflavin in a correlated manner, whereas M. ruber produces monascin with minimum ankaflavin. M. purpureus is capable of producing citrinin; however, it is unlikely able to produce monacolin K. In contrast, M. ruber produces monacolin K, but not citrinin. We suggest that the current monacolin K content-related regulation of Monascus food should be revised, and labeling of Monascus species should be considered.
Project description:The enzymatic repertoire of starter cultures is important for cheese characteristics but is challenging to characterize due to the high protein and fat concentration, and the semi-solid state of the cheese matrix. This study aimed to generate a protocol to characterize the proteome of bacteria harvested from milk and cheese, to assess the proteome differences between Lactococcus cremoris grown in milk and laboratory medium, and to investigate the proteome adaptation during cheese production and ripening.
Project description:Three new compounds, monarubins A-C (1, 6 and 13), together with ten known compounds, including four alkaloids (2-5), two isocoumarins (7 and 8) and four polyketides (9-12), were isolated from marine shellfish-associated fungus Monascus ruber BB5. The structures were determined on the basis of the 1D and 2D NMR, MS, UV and IR data. The absolute configurations of compounds 3, 6 and 13 were determined by ECD calculations. The NMR data of compounds deoxyhydroxyaspergillic acid (3) and 2-hydroxy-6-(1-hydroxy-1-methylpropyl)-3-sec-buthylpyrazine (4) were first reported. All of the isolated compounds were evaluated for their cytotoxic activities against human nasopharyngeal carcinoma cell lines CNE1, CNE2, SUNE1 and HONE1 and hepatocellular carcinoma cell lines QGY7701 and HepG2. Monarubin B (6) displayed potent cytotoxicities against the cancer cell lines HepG2 and QGY7701 with IC50 values of 1.72 and 0.71 ??, respectively; lunatinin (7) showed moderate cytotoxic activities against the cancer cell lines HepG2, QGY7701 and SUNE1 with the IC50 values of 9.60, 7.12 and 28.12 ??, respectively.
Project description:Monascus pigments (MPs) have been used as food colorants for several centuries in Asian countries and are now used throughout the world via Asian catering. The MP biosynthetic pathway has been well-illustrated, but the functions of a few genes, including mrpigG, in the MP gene cluster are still unclear. In the current study, in order to investigate the function of mrpigG in M. ruber M7, gene deletion (ΔmrpigG), complementation (ΔmrpigG::mrpigG) and overexpression (M7::PtrpC-mrpigG) mutants were successfully obtained. The morphologies and biomasses, as well as the MP and citrinin production, of these mutants were analyzed. The results revealed that the disruption, complementation and overexpression of mrpigG showed no apparent defects in morphology, biomass or citrinin production (except MP production) in ΔmrpigG compared with M. ruber M7. Although the MP profiles of ΔmrpigG and M. ruber M7 were almost the same-with both having four yellow pigments, two orange pigments (OPs) and two red pigments (RPs)-their yields were decreased in ΔmrpigG to a certain extent. Particularly, the content of rubropunctatin (an OP) and its derivative rubropunctamine (an RP) in ΔmrpigG, both of which have a five-carbon side chain, accounted for 57.7%, and 22.3% of those in M. ruber M7. On the other hand, monascorubrin (an OP) and its derivative monascorubramine (an RP), both of which have a seven-carbon side chain, were increased by 1.15 and 2.55 times, respectively, in ΔmrpigG compared with M. ruber M7. These results suggest that the MrPigG protein may preferentially catalyze the biosynthesis of MPs with a five-carbon side chain.
Project description:To investigate the relationship between starch hydrolysis and Monascus pigments (MPs) production, the α-amylase gene (AOamyA) from Aspergillus oryzae was heterologously expressed in Monascus ruber CICC41233, and we obtained a positive transformant named Monascus ruber Amy9. In M. ruber Amy9, the α-amylase activities were 6.65- and 4.26-fold higher at 72 h and 144 h, respectively, than those in the parent strain with the glucose as solo carbon medium. Surprisingly, in the MPs fermentation medium with rice powder as solo material, M. ruber Amy9 completely degraded starch at 48 h, while 43.93 and 7.29 mg/mL starch remained at 48 and 144 h, respectively, in the parent strain. Monascus ruber Amy9 accelerated starch hydrolysis, which enhanced biomass and also increased total MPs by 132% after 144 h. Compared with M. ruber CICC41233, the relative gene expression levels, as determined by a quantitative real-time polymerase chain reaction analysis, of acl2 encoding ATP-citrate lyase subunit 2, pks encoding polyketide synthase, and fasB encoding the fatty acid synthase beta subunit increased by 33.14, 145.18, and 32.15%, respectively, after 144 h in M. ruber Amy9. The up-regulated expression of these key genes in MPs synthesis contributed to the large increase in MPs production. This interesting work provided us with a new idea and a new target for the study of the MPs production.