Project description:Bradyrhizobia are common members of soil microbiomes and known as N2-fixing symbionts of economically important legumes. Many are also denitrifiers, which can act as sinks or sources for N2O. Inoculation with compatible rhizobia is often needed for optimal N2-fixation, but the choice of inoculant may have consequences for N2O emission. Here, we determined the phylogeny and denitrification capacity of Bradyrhizobium strains, most of them isolated from peanut-nodules. Analyses of genomes and denitrification end-points showed that all were denitrifiers, but only ~1/3 could reduce N2O. The N2O-reducing isolates had strong preference for N2O- over NO3--reduction. Such preference was also observed in a study of other bradyrhizobia and tentatively ascribed to competition between the electron pathways to Nap (periplasmic NO3- reductase) and Nos (N2O reductase). Another possible explanation is lower abundance of Nap than Nos. Here, proteomics revealed that Nap was instead more abundant than Nos, supporting the hypothesis that the electron pathway to Nos outcompetes that to Nap. In contrast, Paracoccus denitrificans, which has membrane-bond NO3- reductase (Nar), reduced N2O and NO3- simultaneously. We propose that the control at the metabolic level, favoring N2O reduction over NO3- reduction, applies also to other denitrifiers carrying Nos and Nap but lacking Nar.
2021-09-27 | PXD023200 | Pride
Project description:The effect of soil nematodes on N2O emission
Project description:We report here the RNA seq results of sRNA enriched Paracoccus denitrificans grown under three different N2O levels (high N2O reffered to as CuL/ low N2O reffered to as CuH/ Low N2O aerobic reffered to as CuH O2)
Project description:Oxygen deficient zones (ODZs) are major sites of net natural oceanic nitrous oxide (N2O) production and emissions. In order to understand changes in the magnitude of N2O production in response to global change, knowledge on the individual contributions of the major microbial pathways (nitrification and denitrification) to N2O production and their regulation is needed. In the ODZ of the coastal area off Peru, the sensitivity of N2O production to oxygen and organic matter was investigated using 15N-tracer experiments in combination with qPCR and microarray analysis of total and active functional genes targeting archaeal amoA and nirS as marker genes for nitrification and denitrification, respectively. Denitrification was responsible for the highest N2O production with mean 8.7 nmol L-1 d-1 but up to 118 ± 27.8 nmol L-1 d-1 just below the oxic-anoxic interface. Highest N2O production from AO of 0.16 ± 0.003 nmol L-1 d-1 occurred in the upper oxycline at O2 concentrations of 10 - 30 µmol L-1 which coincided with highest archaeal amoA transcripts/genes. Oxygen responses of N2O production varied with substrate, but production and yields were generally highest below 10 µmol L-1 O2. Particulate organic matter additions increased N2O production by denitrification up to 5-fold suggesting increased N2O production during times of high particulate organic matter export. High N2O yields from ammonium oxidation of 2.1% were measured, but the overall contribution to N2O production stays an order of magnitude behind denitrification as an N2O source. Hence, these findings show that denitrification is the most important N2O production process in low oxygen conditions fueled by organic carbon supply which implies a positive feedback of the total oceanic N2O sources in response to increasing oceanic deoxygenation. [SUBMITTER_CITATION]: Frey, C., Bange, H. W., Achterberg, E. P., Jayakumar, A., Löscher, C. R., Arévalo-Martínez, D. L., León-Palmero, E., Sun, M., Sun, X., Xie, R. C., Oleynik, S., and Ward, B. B.: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru, Biogeosciences, 17, 2263-2287
Project description:Oxygen deficient zones (ODZs) are major sites of net natural oceanic nitrous oxide (N2O) production and emissions. In order to understand changes in the magnitude of N2O production in response to global change, knowledge on the individual contributions of the major microbial pathways (nitrification and denitrification) to N2O production and their regulation is needed. In the ODZ of the coastal area off Peru, the sensitivity of N2O production to oxygen and organic matter was investigated using 15N-tracer experiments in combination with qPCR and microarray analysis of total and active functional genes targeting archaeal amoA and nirS as marker genes for nitrification and denitrification, respectively. Denitrification was responsible for the highest N2O production with mean 8.7 nmol L-1 d-1 but up to 118 ± 27.8 nmol L-1 d-1 just below the oxic-anoxic interface. Highest N2O production from AO of 0.16 ± 0.003 nmol L-1 d-1 occurred in the upper oxycline at O2 concentrations of 10 - 30 µmol L-1 which coincided with highest archaeal amoA transcripts/genes. Oxygen responses of N2O production varied with substrate, but production and yields were generally highest below 10 µmol L-1 O2. Particulate organic matter additions increased N2O production by denitrification up to 5-fold suggesting increased N2O production during times of high particulate organic matter export. High N2O yields from ammonium oxidation of 2.1% were measured, but the overall contribution to N2O production stays an order of magnitude behind denitrification as an N2O source. Hence, these findings show that denitrification is the most important N2O production process in low oxygen conditions fueled by organic carbon supply which implies a positive feedback of the total oceanic N2O sources in response to increasing oceanic deoxygenation. [SUBMITTER_CITATION]: Frey, C., Bange, H. W., Achterberg, E. P., Jayakumar, A., Löscher, C. R., Arévalo-Martínez, D. L., León-Palmero, E., Sun, M., Sun, X., Xie, R. C., Oleynik, S., and Ward, B. B.: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru, Biogeosciences, 17, 2263-2287
2020-01-07 | GSE142805 | GEO
Project description:The effects of microplastics on denitrification and assocaited N2O emission