Project description:This pilot study enrolled 9 GWI (Gulf War Illness) cases identified from the Department of Veterans Affairs GWI registry, and 11 sedentary control veterans who had not been deployed to the Persian Gulf and were matched to cases by sex, body mass index (BMI) and age.<br>We exposed GWI patients and matched controls to an exercise challenge to explore differences in immune cell function measured by classic immune assays and gene expression profiling.
Project description:Ammonia-oxidizing archaeal (AOA) amoA diversity and relative abundance in Gulf of Mexico sediments (0-2 cm) were investigated using a functional gene microarray; a two color array with a universal internal standard
2013-03-01 | GSE42286 | GEO
Project description:Population Genomics of Oysters in the Persian Arabian Gulf
Project description:Combat veterans from the Persian Gulf War have unexplained yet persistent impairment in colonic motility due to combat-related toxic exposures. Central to Gulf War-related toxic exposures was the unmitigated ingestion of Pyridostigmine bromide (PB). We previously developed a Gulf War Illness (GWI) mouse model, where acute PB exposure led to immediate disruptions in colonic motility. Here, we explore mechanisms by which acute enteric neuroinflammation produces peristent impairment in colonic motility. GWI mice were exposed to PB transiently, and allowed to recover with no exposures for 1 month. GWI mice had significantly increased amplitudes of colonic contraction and diminished nerve-stimulated colonic relaxation, compared to naive controls. Immunohistological characterization demonstrated persistent chronic damage in enteric neuronal network integrity, accompanied by a significant imbalance in excitatory and inhibitory motor neuronal populations. Inflammatory CD40+ tissue- resident macrophages were identified with enteric neural stem cells in GWI colons, with an increase in secreted inflammatory cytokines. Unbiased transcriptomic analysis corroborated peristent low grade enteric neuroinflammation, overall resulting in impaired repair and regeneration of neural circuity in GWI. Our learnings can be leveraged to design new regenerative therapies for Gulf War veterans, and broadly impact our understanding of severeal inflammatory disorders of the gut.
Project description:Gulf War Illness (GWI) is a diverse set of neurologic and systemic symptoms affecting many veterans deployed in the Persian Gulf War, but its etiology is unknown and treatment options are limited. Veterans with GWI were exposed to a variety of agents, including pyridostigmine bromide, used as prophylaxis against nerve agents, intranasal lipopolysaccharide (LPS) from desert sandstorms, and chronic unpredictable stress (CUS) from combat. Here, we investigated the gene expression effects of these three Gulf War-related exposures (GWE) in adult rat frontal cortex (FC) and lateral amygdala (LA) using Clariom S microarrays. We found 138 transcript clusters (TCs) in LA and 38 TCs in FC differentially expressed between the group with GWE (n=2) compared to naïve controls (n=3, FDR <10%). These TCs included genes involved in inflammation such as Fosb (pmin=1.02e-5) and Junb (pmin=1.13e-5). Gene ontology analysis found enrichment of differentially expressed genes in “T cell differentiation” (pmin=8.71e-5) and “response to organophosphorus” (pmin=1.74e-8), among other categories. Lastly, we found that prophylactic treatment with rosiglitazone, a PPAR- agonist, reduced gene expression changes associated with GWE (in LA: 115/138 [83.3%] TCs with reduced changes, χ2=61.33, p=4.82e-15). These results suggest our rat model of GWI is associated with gene expression changes related to neuroinflammation and that some of these molecular changes may be mitigated by rosiglitazone prophylaxis.
Project description:Gas hydrates, also known as clathrates, are cages of ice-like water crystals encasing gas molecules such as methane (CH4). Despite the global importance of gas hydrates, their microbiomes remain mysterious. Microbial cells are physically associated with hydrates, and the taxonomy of these hydrate-associated microbiomes is distinct from non-hydrate-bearing sites. Global 16S rRNA gene surveys show that members of sub-clade JS-1 of the uncultivated bacterial candidate phylum Atribacteria are the dominant taxa in gas hydrates. The Atribacteria phylogeny is highly diverse, suggesting the potential for wide functional variation and niche specialization. Here, we examined the distribution, phylogeny, and metabolic potential of uncultivated Atribacteria in cold, salty, and high-pressure sediments beneath Hydrate Ridge, off the coast of Oregon, USA, using a combination of 16S rRNA gene amplicon, metagenomic, and metaproteomic analysis. Methods were developed to extract bacterial cellular protein from these sediments, as outlined below. Sample Description Three sediments samples were collected from beneath Hydrate Ridge, off the coast of Oregon, USA. Sediments were cored at ODP site 1244 (44°35.1784´N; 125°7.1902´W; 895 m water depth) on the eastern flank of Hydrate Ridge ~3 km northeast of the southern summit on ODP Leg 204 in 2002 and stored at -80°C at the IODP Gulf Coast Repository. E10H5 sediment is from 68.5 meters below sediment surface interface C1H2 sediment is from 2 meters below sediment surface interface. C3H4 sediment is from 21 meters below sediment surface interface.