Project description:Acetylsalicylic acid (ASA) is one of the first drugs to be obtained by synthesis while being the most used. It has experienced the longest lasting commercial success and is considered the most popular drug of the modern era. ASA, originally used as an anti-inflammatory medication, nowadays is predominantly used as an antiplatelet agent for prophylaxis in cardiac patients. Many studies show that the benefits of using ASA far outweigh the potential risk of side effects. With particular emphasis on the possibility of ASA repositioning for new therapies, extending the indications for use beyond the diseases from the spectrum of atherosclerotic diseases, such as cancer, requires shifting the benefit–risk ratio, although very good, even more towards safety. Interesting activities consisting not only of changing the formulation but also modifying the drug molecule seem to be an important goal of the 21st century. ASA has become a milestone in two important fields: pharmacy and medicine. For a pharmacist, ASA is a long-used drug for which individual indications are practically maintained. For a doctor, acetylsalicylic acid is primarily an antiplatelet drug that saves millions of lives of patients with coronary heart disease or after a stroke. These facts do not exempt us from improving therapeutic methods based on ASA, the main goal of which is to reduce the risk of side effects, as well as to extend effectiveness. Modified acetylsalicylic acid molecules already seem to be a promising therapeutic option.
Project description:PRIMUS is a pedigree reconstruction algorithm that uses estimates of genome-wide identity by descent to reconstruct pedigrees consistent with observed genetic data. However, when genetic data for individuals within a pedigree are missing, often multiple pedigrees can be reconstructed that fit the data. We report a major expansion of PRIMUS that uses mitochondrial (mtDNA) and non-recombining Y chromosome (NRY) haplotypes to eliminate many pedigree structures that are inconsistent with the genetic data. We demonstrate that discordances in mtDNA and NRY haplotypes substantially reduce the number of potential pedigrees, and often lead to the identification of the correct pedigree.We have implemented PRIMUS updates in PERL and it is available at primus.gs.washington.edu.
Project description:Understanding and correctly utilizing relatedness among samples is essential for genetic analysis; however, managing sample records and pedigrees can often be error prone and incomplete. Data sets ascertained by random sampling often harbor cryptic relatedness that can be leveraged in genetic analyses for maximizing power. We have developed a method that uses genome-wide estimates of pairwise identity by descent to identify families and quickly reconstruct and score all possible pedigrees that fit the genetic data by using up to third-degree relatives, and we have included it in the software package PRIMUS (Pedigree Reconstruction and Identification of the Maximally Unrelated Set). Here, we validate its performance on simulated, clinical, and HapMap pedigrees. Among these samples, we demonstrate that PRIMUS can verify reported pedigree structures and identify cryptic relationships. Finally, we show that PRIMUS reconstructed pedigrees, all of which were previously unknown, for 203 families from a cohort collected in Starr County, TX (1,890 samples).
Project description:Tiny marine green algae issued from two deep branches of the Chlorophyta, the Mamiellophyceae and Chloropicophyceae, dominate different regions of the oceans and play key roles in planktonic communities. Considering that the Mamiellophyceae is the sole lineage of prasinophyte algae that has been intensively investigated, the extent to which these two algal groups differ in their metabolic capacities and cellular processes is currently unknown. To address this gap of knowledge, we investigate here the nuclear genome sequence of a member of the Chloropicophyceae, Chloropicon primus. Among the main biological insights that emerge from this 17.4?Mb genome, we find an unexpected diploid structure for most chromosomes and a propionate detoxification pathway in green algae. Our results support the notion that separate events of genome minimization, which entailed differential losses of genes/pathways, have occurred in the Chloropicophyceae and Mamiellophyceae, suggesting different strategies of adaptation to oceanic environments.
Project description:BackgroundThe PRIMUS is a Multiple Sclerosis (MS)-specific suite of outcome measures including assessments of QoL (PRIMUS QoL, scored 0-22) and activity limitations (PRIMUS Activities, scored 0-30). The U-FIS is a measure of fatigue impact (scored 0-66). These measures have been fully validated previously using an MS sample with mixed diagnoses. The aim of the present study was to validate the measures further in a specifically Relapse Remitting MS (RRMS) sample and to provide preliminary evidence of the responder definitions (RD; also known as minimal important difference) for these instruments.MethodsData were derived from a multi-country efficacy trial of MS patients with assessments at baseline and 12 months. Baseline data were used to assess the internal reliability and validity of the measures. Both anchor-based and distribution-based approaches were employed for estimating RD. Anchor-based estimates were based on published RD values for the EQ-5D and were assessed for those improving and deteriorating separately. Distribution-based estimates were based on standard error of measurement (SEM), change score equivalent to 0.30, and change score equivalent to 0.50, effect sizes (ES).ResultsThe sample included 911 RRMS patients (67.3% female, age mean (SD) 36.2 (8.4) years, duration of MS mean (SD) 4.8 (5.2) years). Results showed that the PRIMUS and U-FIS had good internal consistency. Appropriate correlations were observed with comparator instruments and both measures were able to distinguish between participants based on Expanded Disability Status Scale scores and time since diagnosis. The anchor-based and distribution-based RD estimates were: PRIMUS Activities range = 1.2-2.3, PRIMUS QoL range = 1.0-2.2, and U-FIS range = 2.4-7.0.ConclusionsThe results show that the PRIMUS and U-FIS are valid instruments for use with RRMS patients. The analyses provide preliminary information on how to interpret scores on the scales. These data will be useful for assessing treatment efficacy and for powering clinical studies. TRIAL REFERENCE NUMBER: ClinicalTrials.gov Identifier NCT00340834.