Project description:The plant hormone auxin represents an important regulator of growth and development. Significant insight into the mechanisms of auxin action have been obtained from studies of auxin resistant mutants such as aux1 and axr3. The Arabidopsis axr4 mutant was identified in a screen for auxin resistant root growth. In addition to the root growth of axr4 being resistant to exogenous auxin, there is also a 50% reduction in the number of lateral roots that form. The double axr4/aux1 mutant shows an additive effect in reducing lateral root numbers to 10% of wild-type. Gaining further information about the potential interaction between AUX1 and AXR4 may provide important insight into auxin regulated plant growth. Mapping experiments have placed the AXR4 gene on the lower arm of chromosome 1 between the ch1 and le markers (Hobbie and Estelle 1995). However, the AXR4 gene remains to be cloned. Identifying the AXR4 gene will help in elucidating the function of the protein. A transcript analysis of axr4 mutant seedlings will be used in 2 ways. Firstly, the transcription level of genes in the locality of the axr4 map position will be examined to identify those which are absent or significantly reduced in axr4 compared to the Col0 control. If the lesion causing the axr4 mutation results in a highly unstable mRNA or abolishes transcription then the signal will be dramatically reduced. Potential candidate genes identified in this way will be further analysed using a combination of RT-PCR and sequencing to identify the AXR4 gene. Secondly, the transcriptomics data obtained from axr4 and Col0 will be compared to identify genes which show significant transcript level differences and therefore represent targets for either direct or indirect regulation by AXR4. Hobbie, L. and Estelle, M. (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7 211-220
Project description:The plant hormone auxin represents an important regulator of growth and development. Significant insight into the mechanisms of auxin action have been obtained from studies of auxin resistant mutants such as aux1 and axr3. The Arabidopsis axr4 mutant was identified in a screen for auxin resistant root growth. In addition to the root growth of axr4 being resistant to exogenous auxin, there is also a 50% reduction in the number of lateral roots that form. The double axr4/aux1 mutant shows an additive effect in reducing lateral root numbers to 10% of wild-type. Gaining further information about the potential interaction between AUX1 and AXR4 may provide important insight into auxin regulated plant growth. Mapping experiments have placed the AXR4 gene on the lower arm of chromosome 1 between the ch1 and le markers (Hobbie and Estelle 1995). However, the AXR4 gene remains to be cloned. Identifying the AXR4 gene will help in elucidating the function of the protein. A transcript analysis of axr4 mutant seedlings will be used in 2 ways. Firstly, the transcription level of genes in the locality of the axr4 map position will be examined to identify those which are absent or significantly reduced in axr4 compared to the Col0 control. If the lesion causing the axr4 mutation results in a highly unstable mRNA or abolishes transcription then the signal will be dramatically reduced. Potential candidate genes identified in this way will be further analysed using a combination of RT-PCR and sequencing to identify the AXR4 gene. Secondly, the transcriptomics data obtained from axr4 and Col0 will be compared to identify genes which show significant transcript level differences and therefore represent targets for either direct or indirect regulation by AXR4. Hobbie, L. and Estelle, M. (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7 211-220 Experiment Overall Design: 2 samples
Project description:Transcriptional profiling of Arabidopsis wild-type (Col0) control seedlings with corresponding mutant seedlings is performed using Aligent's Whole Arabidopsis Gene Expression Microarray (G2519F, V4, 4x44K).
Project description:Transcriptional profiling of Arabidopsis wild-type (Col0) control flower buds or seedlings with corresponding mutant flower buds or seedlings is performed using Aligent's Whole Arabidopsis Gene Expression Microarray (G2519F, V4, 4x44K).
Project description:The plant hormone auxin represents an important regulator of growth and development. Significant insight into the mechanisms of auxin action have been obtained from studies of auxin resistant mutants such as aux1 and axr3. The Arabidopsis axr4 mutant was identified in a screen for auxin resistant root growth. In addition to the root growth of axr4 being resistant to exogenous auxin, there is also a 50% reduction in the number of lateral roots that form. The double axr4/aux1 mutant shows an additive effect in reducing lateral root numbers to 10% of wild-type. Gaining further information about the potential interaction between AUX1 and AXR4 may provide important insight into auxin regulated plant growth. Mapping experiments have placed the AXR4 gene on the lower arm of chromosome 1 between the ch1 and le markers (Hobbie and Estelle 1995). However, the AXR4 gene remains to be cloned. Identifying the AXR4 gene will help in elucidating the function of the protein. A transcript analysis of axr4 mutant seedlings will be used in 2 ways. Firstly, the transcription level of genes in the locality of the axr4 map position will be examined to identify those which are absent or significantly reduced in axr4 compared to the Col0 control. If the lesion causing the axr4 mutation results in a highly unstable mRNA or abolishes transcription then the signal will be dramatically reduced. Potential candidate genes identified in this way will be further analysed using a combination of RT-PCR and sequencing to identify the AXR4 gene. Secondly, the transcriptomics data obtained from axr4 and Col0 will be compared to identify genes which show significant transcript level differences and therefore represent targets for either direct or indirect regulation by AXR4. Hobbie, L. and Estelle, M. (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7 211-220 Keywords: strain_or_line_design
Project description:Transcriptional profiling of cotyledon transcriptomics at the seedling stage (6 d) by comparison of wild-type vs. cotyledon-less laterne (= pid enp) homozygous mutant. The goal was to determine the transcriptomic profile of a cotyledon. The experiment took advantage of the endogenously caused lack of cotyledons instead of dissecting these organs, which would cause wound-induced expression.This was achieved by comparing seedlings of the Arabidopsis thaliana pid enp double mutant, which is incapable to generate cotyledons. This is caused by the loss of apical cell polarisation of the auxin efflux carrier PIN1 in epidermal cells during embryogenesis.
Project description:rs05-12_setii - all comparison - Differential transcriptome in mutant plants - seeds were sown in vitro and plantlets (Col0 wild type ,and n1, n2, n3, x123, sdg8, vip4,sdg25 and sdg26 mutants)were cultivated during 6 days (1.02 boyes stadge) Keywords: gene knock out
Project description:In this study we profile expression of target genes downstream of auxin signaling in Arabidopsis hypocotyls elongating in response to auxin. The synthetic auxin picloram is used in order to take advantage of the picloram-resistant auxin receptor mutant afb5-5, which fails to elongate in response to picloram.
Project description:In this study we profile expression of target genes downstream of auxin signaling in Arabidopsis hypocotyls elongating in response to auxin. The synthetic auxin picloram is used in order to take advantage of the picloram-resistant auxin receptor mutant afb5-5, which fails to elongate in response to picloram. A 4-plex chip was used for analyzing the transcriptome in hypocotyls dissected from wild-type seedlings following a 30min and 2hr picloram or solvent control treatment. Three biological replicate samples were analyzed, each containing roughly 400 hypocotyls. A 12-plex chip was used for analyzing mRNA from hypocotyls dissected from wild-type and afb5-5 (SALK_110643) mutant seedlings following a 2hr picloram or solvent control treatment. Three biological replicates were analyzed, each containing roughly 700 hypocotyls.