Project description:Experiments were achieved on Arabidopsis thaliana. Transcriptional profiling of roots and shoots from plants treated with lead were compared to plants treated in similar conditions without lead. Four weeks old A. thaliana seedlings were treated in hydroponic cultures with Pb during 3 days, by adding or not 40 µM Pb(NO3)2.
Project description:Nitrate (NO3-) is crucial for optimal plant growth and development and often limits crop productivity at the low availability. In comparison with model plant Arabidopsis, the molecular mechanisms underlying NO3- acquisition and utilization remain largely unclear in maize. In particular, only a few genes have been exploited to improve nitrogen use efficiency (NUE). Here, we demonstrated that NO3--inducible ZmNRT1.1B (ZmNPF6.6) positively regulated NO3--dependent growth and NUE in maize. We showed that the tandem duplicated proteoform ZmNRT1.1C is irrelevant to maize seedling growth under nitrate supply, however, loss-of-function of ZmNRT1.1B significantly weakened plant growth under adequate NO3- supply in both hydroponic and field conditions. 15N-labeled NO3- absorption assay indicated that ZmNRT1.1B mediated high-affinity NO3--transport and root-to-shoot NO3- translocation. Furthermore, upon NO3- supply, ZmNRT1.1B promotes cytoplasmic-to-nuclear shuttling of ZmNLP3.1 (ZmNLP8), which co-regulates the expression of genes involved in NO3- response, cytokinin biosynthesis and carbon metabolism. Remarkably, overexpression of ZmNRT1.1B in modern maize hybrids improved grain yield under nitrogen (N) limiting fields. Taken together, our study revealed a crucial role of ZmNRT1.1B in high-affinity NO3- transport and signaling and offers valuable genetic resource for breeding nitrogen use efficient high-yield cultivars.
Project description:To explore mechanisms involved in the plant-microbe interactions, we proceeded with genome-wide transcriptome analysis of Arabidopsis roots incubated with E. coli Bl21 for 24 hours. Control plants did not receive E. coli.
Project description:Chromatin immunoprecipitation was performed in nlp7-1 Arabidopsis thaliana seedlings complemented by a pNLP7::NLP7-GFP construct upon 10 minutes NO3- resupply after a 3-day NO3- starvation.
Project description:Nitrogen is one of the essential elements for plant growth. NH4+ and NO3- are two major forms of absorbing element N for higher plants. In this study we found that the growth of Panax notoginseng is inhibited when only adding ammonium nitrogen fertilizer, and adding nitrate fertilizer can alleviate the toxicity caused by ammonium. We use RNA-seq to identify genes that are related to the alleviated phenotypes after introducing NO3- to Panax notoginseng roots under NH4+ stresses. Twelve RNA-seq profiles in four sample groups, i.e., control, samples treated with NH4+, samples treated with NO3- only, and treated with both NH4+ and NO3- were obtained and analyzed to identify deregulated genes in samples with different treatments. ACLA-3 gene is downregulated in NH4+ treated samples, but is upregulated in samples treated with NO3- and with both NH4+ and NO3-, which is further validated in another set of samples using qRT-PCR. Our results suggest that unbalanced metabolism of nitrogen and nitrogen is the main cause of ammonium poisoning in roots of Panax notoginseng, and NO3- may significantly upregulate the activity of ACLA-3 which subsequently enhances the citrate cycle and many other metabolic pathways in Panax notoginseng root. These potentially increase the integrity of the Panax notoginseng roots. Our results suggest that introducing NO3- fertilizer is an effective means to prevent the occurrence of toxic ammonium in Panax notoginseng root.
Project description:The goal of this project is to compare the primary metabolite profile in different tissue types of the model plant Arabidopsis thaliana. Specifically, plants were grown hydroponically under the long-day (16hr light/day) condition at 21C. Tissue samples, including leaves, inflorescences, and roots were harvest 4 1/2 weeks post sowing. Untargeted primary metabolites profiling was carried out using GCTOF.
Project description:affy_nitrogen_medicago - affy_nitrogen_medicago - Experiment has been designed to characterize the molecular expression patterns associated to a contrasted modification of the nitrogen status of the whole plant. The systemic effects of nitrogen status modifications are investigated and compared on non nodulated plant supplied with NO3, NH4 or nodulated plants (Sinorhizobium meliloti 2011) supplied with air. The root systems were separated in two compartments of unequal sizes (split root system). Two treatments were applied on the larger compartment in order to modulate the nitrogen status of the plant: for the S treatment, roots are supplied with nutrient solution containing 10 mM NH4NO3,, whereas for the C treatment, roots are supplied with nitrogen free medium. In the case of N2 fixing plants, N limitation was obtained by replacing air by a mixture of Ar and O2 80 per cent and 20 per cent. The effects of these treatments were investigated on roots of the minor compartment supplied continuously with either NO3 1 mM, NH4 1 mM or air (N2) and on the shoots. We were also interested in the molecular expression patterns associated to the roots deprived of N.-The root system of non-nodulated (NO3- and NH4+) or nodulated (N2) plants is split into two unequal parts and each one is installed in a separate compartment. For the S treatement, the major root part is supplied with NH4NO3 10 mM whereas the minor part is supplied with either NO3- 1mM, NH4+ 1mM or N2. For the C treatement, the major root part is supplied with nitrogen-free nutrient solution whereas the minor part is supplied with either NO3- 1mM, NH4plus 1mM or N2. Each treatement is four days long. Samples of roots of six biological types (NO3S, NO3C, NH4S, NH4C, N2S and N2C) were collected. Two biological repeats per biological types have been analyzed. The effect of the S and C treatments were investigated for each N sources by comparing Affymetrix transcriptomes (NO3C vs NO3S, NH4C vs NH4S, N2C vs N2S). Keywords: treatement (nitrogen-sufficient) vs treatement (nitrogen-limited)
Project description:Chromatin immunoprecipitation was performed in nlp2-2 Arabidopsis thaliana Col-0 14-d-old seedlings complemented by a pNLP2::NLP2-GFP construct upon 30 minutes NO3- resupply after a 3-day NO3- starvation.
Project description:affy_nitrogen_medicago - affy_nitrogen_medicago - Experiment has been designed to characterize the molecular expression patterns associated to a contrasted modification of the nitrogen status of the whole plant. The systemic effects of nitrogen status modifications are investigated and compared on non nodulated plant supplied with NO3, NH4 or nodulated plants (Sinorhizobium meliloti 2011) supplied with air. The root systems were separated in two compartments of unequal sizes (split root system). Two treatments were applied on the larger compartment in order to modulate the nitrogen status of the plant: for the S treatment, roots are supplied with nutrient solution containing 10 mM NH4NO3,, whereas for the C treatment, roots are supplied with nitrogen free medium. In the case of N2 fixing plants, N limitation was obtained by replacing air by a mixture of Ar and O2 80 per cent and 20 per cent. The effects of these treatments were investigated on roots of the minor compartment supplied continuously with either NO3 1 mM, NH4 1 mM or air (N2) and on the shoots. We were also interested in the molecular expression patterns associated to the roots deprived of N.-The root system of non-nodulated (NO3- and NH4+) or nodulated (N2) plants is split into two unequal parts and each one is installed in a separate compartment. For the S treatement, the major root part is supplied with NH4NO3 10 mM whereas the minor part is supplied with either NO3- 1mM, NH4+ 1mM or N2. For the C treatement, the major root part is supplied with nitrogen-free nutrient solution whereas the minor part is supplied with either NO3- 1mM, NH4plus 1mM or N2. Each treatement is four days long. Samples of roots of six biological types (NO3S, NO3C, NH4S, NH4C, N2S and N2C) were collected. Two biological repeats per biological types have been analyzed. The effect of the S and C treatments were investigated for each N sources by comparing Affymetrix transcriptomes (NO3C vs NO3S, NH4C vs NH4S, N2C vs N2S). Experiment Overall Design: 26 arrays - medicago