Project description:Members of the bacterial phylum Spirochaetes are primarily studied for their commensal and pathogenic roles in animal hosts. However, Spirochaetes are also frequently detected in anoxic hydrocarbon-contaminated environments but their ecological role in such ecosystems has so far remained unclear. Here we provide a functional trait to these frequently detected organisms with an example of a sulfate-reducing, naphthalene-degrading enrichment culture consisting of a sulfate-reducing deltaproteobacterium Desulfobacterium naphthalenivorans and a novel spirochete Rectinema cohabitans. Using a combination of genomic, proteomic, and physiological studies we show that R. cohabitans grows by fermentation of organic compounds derived from biomass from dead cells (necromass). It recycles the derived electrons in the form of H2 to the sulfate-reducing D. naphthalenivorans, thereby supporting naphthalene degradation and forming a simple microbial loop. We provide metagenomic evidence that equivalent associations between Spirochaetes and hydrocarbon-degrading microorganisms are of general importance in hydrocarbon- and organohalide-contaminated ecosystems. We propose that environmental Spirochaetes form a critical component of a microbial loop central to nutrient cycling in subsurface environments. This emphasizes the importance of necromass and H2-cycling in highly toxic contaminated subsurface habitats such as hydrocarbon-polluted aquifers.
Project description:Degradation of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene by anaerobic microorganisms is poorly understood. Strain NaphS2, an anaerobic sulfate reducing marine delta-proteobacterium is capable of using naphthalene and the aromatic compound benzoate, as well as pyruvate, as an electron donors in the presence of sulfate. In order to identify genes involved in the naphthalene degradation pathway, we compared gene expression in NaphS2 during growth on benzoate vs. pyruvate, naphthalene vs. pyruvate, and naphthalene vs benzoate.
Project description:Degradation of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene by anaerobic microorganisms is poorly understood. Strain NaphS2, an anaerobic sulfate reducing marine delta-proteobacterium is capable of using naphthalene and the aromatic compound benzoate, as well as pyruvate, as an electron donors in the presence of sulfate. In order to identify genes involved in the naphthalene degradation pathway, we compared gene expression in NaphS2 during growth on benzoate vs. pyruvate, naphthalene vs. pyruvate, and naphthalene vs benzoate. For each experimental set, aRNA from NaphS2 was labelled Cy5 (experiment) or Cy3(control) with three biological replicates hybridized in duplicate. In addition, because of the size of the predicted genome of NaphS2, ORFs were divided into two separate array designs, designated set1 and set2, such that set1 and set2 represent two separate array designs (probe sets) to be treated separately in statistical analysis.
Project description:Marine microalgae (phytoplankton) mediate almost half of the worldwide photosynthetic carbon dioxide fixation and therefore play a pivotal role in global carbon cycling, most prominently during massive phytoplankton blooms. Phytoplankton biomass consists of considerable proportions of polysaccharides, substantial parts of which are rapidly remineralized by heterotrophic bacteria. We analyzed the diversity, activity and functional potential of such polysaccharide-degrading bacteria in different size fractions during a diverse spring phytoplankton bloom at Helgoland Roads (southern North Sea) at high temporal resolution using microscopic, physicochemical, biodiversity, metagenome and metaproteome analyses.