Project description:Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of many plant species including Arabidopsis thaliana. The symbiotic interaction promotes plant per-formance, growth and resistance/tolerance against abiotic and biotic stress. We demonstrate that exudated compounds from the fungus activate stress and defense responses in the Arabidopsis roots and shoots before the two partners are in physical contact. They induce stomata closure, stimulate reactive oxygen species (ROS) production, stress-related phytohormone accumulation and activate defense and stress genes in the roots and/or shoots. Once a physical contact is established, the stomata re-open, ROS and phytohormone levels decline, and the gene expression pattern indicates a shift from defense to mutualistic interaction. We propose that exudated compounds from P. indica induce stress and defense responses in the host. Root colonization results in the downregulation of defense responses and the activation of genes involved in promoting plant growth, metabolism and performance.
Project description:Next generation sequencing was performed to identify genes changed in Arabidopsis thaliana upon Botrytis cinerea infection. The goal of the work is to find interesting genes involved in plant defense. The object is to reveal the molecular mechanism of plant defense.
Project description:Microbes of the root-associated microbiome contribute to improve resilience and fitness of plants. In this study, the interaction between the salt stress tolerance-inducing beneficial bacterium Enterobacter sp. SA187 and Arabidopsis was investigated with a special focus on the plant immune system. Among the immune signalling mutants, the Lys-motif receptors LYK4 strongly affected the beneficial interaction. Overexpression of the chitin receptor components LYK4 compromised the beneficial effect of SA187 on Arabidopsis. Transcriptome analysis revealed that the role of LYK4 in immunity is intertwined with a function in remodeling defense responses. Overall, our data indicate that components of the plant immune system are key elements in mediating beneficial metabolite-induced plant abiotic stress tolerance.
Project description:GSH, being a versatile molecule, is actively involved in various bilogical processe of plant system. Our previous studies identifies an active role of GSH in plant defense signaling network. Here, we used microarray under GSH treated condition to obtain a global expression profiling under this altered GSH conditions.
Project description:The root-colonizing fungal endophyte Serendipita indica, formerly known as Piriformospora indica, is well known to promote plant biomass production and stress tolerance of its host plants. Previous studies highlighted an important role of calcium Ca2+ signaling in the establishment of the plant–fungus interaction. We here report the comparative analysis of the effect of a mock- and S. indica-infection on both wild-type Arabidopsis plants (Col-3) and cbl7 knockout mutants. Our data provide evidence for the involement of the Ca2+ sensor CBL7 in the control of potassium distribution in the plant and in adjusting plant defense responses to allow the establishment of the plant–fungus symbiosis. The impairment of CBL7 was shown to translate into increased induction of plant defense-related genes.
Project description:Background: Polycyclic aromatic hydrocarbons (PAHs) are toxic, widely-distributed, environmentally persistent, and carcinogenic byproducts of carbon-based fuel combustion. Previously, plant studies have shown that PAHs induce oxidative stress, reduce growth, and cause leaf deformation as well as tissue necrosis. To understand the transcriptional changes that occur during these processes, we performed microarray experiments on Arabidopsis thaliana L. under phenanthrene treatment, and compared the results to published Arabidopsis microarray data representing a variety of stress and hormone treatments. In addition, to probe hormonal aspects of PAH stress, we assayed transgenic ethylene-inducible reporter plants as well as ethylene pathway mutants under phenanthrene treatment. Results: Microarray results revealed numerous perturbations in signaling and metabolic pathways that regulate reactive oxygen species (ROS) and responses related to pathogen defense. A number of glutathione S-transferases that may tag xenobiotics for transport to the vacuole were upregulated. Comparative microarray analyses indicated that the phenanthrene response was closely related to other ROS conditions, including pathogen defense conditions. The ethylene-inducible transgenic reporters were activated by phenanthrene. Mutant experiments showed that PAH inhibits growth through an ethylene-independent pathway, as PAH-treated ethylene-insensitive etr1-4 mutants exhibited a greater growth reduction than WT. Further, phenanthrene-treated, constitutive ethylene signaling mutants had longer roots than the untreated control plants, indicating that the PAH inhibits parts of the ethylene signaling pathway. Conclusions: This study identified major physiological systems that participate in the PAH-induced stress response in Arabidopsis. At the transcriptional level, the results identify specific gene targets that will be valuable in finding lead compounds and engineering increased tolerance. Collectively, the results open a number of new avenues for researching and improving plant resilience and PAH phytoremediation.
Project description:Plants have developed a complicated resistance system, and they exhibit various defense patterns in response to different attackers. However, the determine factors of plant defense patterns are still not clear. Here, we hypothesized that damage patterns of plant attackers play an important role in determining the plant defense patterns. To test this hypothesis, we selected leafminer, which has a special feeding pattern more similar to pathogen damage than chewing insects, as our model insect, and Arabidopsis thaliana as the response plants. The local and systemic responses of Arabidopsis thaliana to leafminer feeding were investigated using the Affymetrix ATH1 genome array.
Project description:Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of many plant species including Arabidopsis thaliana. The symbiotic interaction promotes plant per-formance, growth and resistance/tolerance against abiotic and biotic stress. We demonstrate that exudated compounds from the fungus activate stress and defense responses in the Arabidopsis roots and shoots before the two partners are in physical contact. They induce stomata closure, stimulate reactive oxygen species (ROS) production, stress-related phytohormone accumulation and activate defense and stress genes in the roots and/or shoots. Once a physical contact is established, the stomata re-open, ROS and phytohormone levels decline, and the gene expression pattern indicates a shift from defense to mutualistic interaction. We propose that exudated compounds from P. indica induce stress and defense responses in the host. Root colonization results in the downregulation of defense responses and the activation of genes involved in promoting plant growth, metabolism and performance. Twelve day-old (48 h cold treatment and 10 days of illumination) Arabidopsis seedlings of equal sizes were selected for co-cultivation experiments. They were transferred to PNM plates with a nylone membrane on the top (Johnson et al. 2011) and exposed to a fungal plug 5 mm in diameter or a KM plug of the same size without fungal hyphae (control). The plugs were placed 3 cm away from the closest root part . The light intensity (80 ± 5 μmol m-2 sec-1) was checked every third day to ensure that both P. indica- and mock-treated seedlings receive equal amounts of light.
Project description:Brassinosteroids (BRs) are endogenous plant hormones and essential for normal plant growth and development. MicroRNAs (miRNAs) of Arabidopsis thaliana are involved in mediating cell proliferation in leaves, stress tolerance, and root development. The specifics of BRs mechanisms involving miRNAs are unknown. To explore the role of miRNAs in BR-mediated pathways, we analyzed differences in miRNA profiles between control (mock solution) and 24-epibrassinolide (EBR) treatments from customized miRNA microarrays.