Project description:Even though the incidence of salmonellosis in humans has decreased over the last years, Salmonella spp. are still a leading cause of foodborne outbreaks in Europe (Anon., 2014). Of more than 2500 different serovars of Salmonella enterica, S. enterica serovar Enteritidis (S. Enteritidis) is the most frequently reported serovar in relation to food borne disease, and egg and egg products are the most important vehicles (Anon., 2014). It has recently been shown that S. Enteritidis is superior to other serovars tested regarding survival in egg white, which may explain why many egg borne outbreaks are caused by this serovar (De Vylder et al., 2013). The genetic background for this apparent better adaptation to survival in egg is only partially known. The aim of this work was to carry out gene expression analysis in order to understand how S. Enteritidis adapts to growth in the hostile environment of egg. This study analyzed gene expression of this bacterium during growth in whole egg, and whether highly expressed genes were essential for the growth. High quality RNA was extracted from S. Enteritidis using an improved modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acids biosynthesis, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino-acids, biotin and iron when growing in egg.
Project description:Investigation of whole genome gene expression level changes in Salmonella enterica serova Enteritidis and Typhimurium under chlorine treatment
Project description:Salmonella infections are among the most common foodborne diseases worldwide. The Enteritidis and Dublin serovars of Salmonella enterica are closely related yet they differ significantly in pathogenicity and epidemiology. Enteritidis is a broad-host-range serovar that commonly causes gastroenteritis and infrequently causes invasive disease in humans. Dublin mainly colonizes cattle but upon infecting humans often results in invasive disease. The aim of this work was to elucidate the molecular factors responsible for the differential pathogenic behavior between both serovars. We performed a quantitative proteomic comparative analysis between one clinical isolate of each serovar grown in vitro under gut mimicking conditions (GMC). Compared to S. Enteritidis, the S. Dublin proteome was enriched in proteins linked to response to several stress conditions, such as those encountered during host infection, as well as to virulence. The S. Enteritidis proteome contained proteins related to central anaerobic metabolism pathways that were undetected in S. Dublin. Similar differences were also found at the transcriptional level, as mRNA levels correlated with proteomic results for 17 of the 20 genes tested in 4 natural isolates of each serovar grown in GMC. This work reveals proteomic differences between two Salmonella serovars with markedly different invasive and host-range characteristics, grown in an infection relevant condition, which were not evident in previous comparative genomic analyses.
Project description:Many non-typhoidal serovars of Salmonella such as Salmonella enterica serovar Typhimurium (S. Typhimurium) are the leading cause of food-borne gastroenteritis, resulting in millions of infections each year and sometimes death. Salmonella enterica serovar Typhimurium is the most common non-typhoidal Salmonella strain isolated from patients around the world and is used as a mouse model to study bacterial pathogenesis and host-microbe interactions. Furthermore, S. Typhimurium is an important pathogen in livestock animals including chickens and cattle. S. Typhimurium utilises a multitude of virulence factors to reach and invade host cells and for its intracellular survival. However, little is known about the mechanism of protein synthesis of these virulence factors at the codon level. Here, we performed RNA-seq and ribosome profiling. Ribosome profiling allows the global mapping of translating ribosomes on the transcriptome and therefore provides direct measure of protein synthesis.
Project description:Investigation of whole genome gene expression level changes in Salmonella enterica serova Enteritidis and Typhimurium under chlorine treatment An eighteen chip study using total RNA isolated from three separate cultures of (1) S. Enteritidis in BHI broth (2) S. Typhimurium in BHI broth (3) S. Enteritidis in BHI broth w/ 130 ppm chlorine (4) S. Typhimurium in BHI w/ 130 ppm chlorine (5) S. Enteritidis in BHI broth w/ 390 ppm (6) S. Typhimurium in BHI broth w/ 390 ppm. Each chip measures the expression level of 5,027 ORFs covering the whole genome of S. Enteritidis and S. Typhimurium.
Project description:The 2017-2019 foodborne outbreak of Salmonella enterica serovar Reading (S. Reading) in North America revealed the need for effective control of this serovar in turkey production. This study evaluated two live-attenuated Salmonella vaccines against an outbreak-associated strain of S. Reading in turkeys. At 1 day and 3 weeks of age, male turkey poults were either mock-vaccinated or given either an internally developed cross-protective vaccine and a commercially available vaccine. At 7 weeks of age, poults were challenged with S. Reading; one mock-vaccinated group was mock-challenged. Along with assessment of Salmonella colonization and dissemination, acute transcriptomic responses in the cecal tonsil were characterized at 2 days post inoculation and revealed decreased expression of genes encoding intestinal transporters and tight junction proteins. Vaccination with either vaccine mitigated most of the transcriptional changes in intestinal health-related genes induced by S. Reading in turkey cecal tonsil.
Project description:Transcriptional profiles of mid-exponentially growing Salmonella enterica sv Enteritidis PT8 cultures in response to exposure to trans-cinnamaldehyde (0.01%; 0.75mM) or eugenol (0.04%; 2.46mM)
Project description:Salmonella Enteritidis is the major food-borne pathogen primarily causing human infection through contaminated chicken meat and eggs. We recently demonstrated that S. Enteritidis strains from poultry differ in their ability to invade human intestinal cells and cause disease in orally challenged mice. Here we hypothesized that the differential pathogenicity of S. Enteritidis strains is due to the differential fitness in the adverse environments that may be encountered during infection in the host. The response of a panel of six S. Enteritidis strains to acid stress, oxidative stress, survival in egg albumen and the ability to cause infection in chickens were analyzed. This analysis allowed classification of strains into two categories: stress- sensitive and stress- resistant, with the former showing significantly (P<0.05) reduced survival in acidic (gastric phase of infection) and oxidative (intestinal and systemic phase of infection) stress. Stress-sensitive strains also showed impaired intestinal colonization and systemic dissemination in orally inoculated chickens and failed to survive/grow in egg albumen. Comparative genomic hybridization microarray analysis revealed no differences at the discriminatory level of the whole gene content between stress-sensitive and stress-resistant strains. However, sequencing of rpoS, a stress-regulatory gene, revealed that one of the three stress-sensitive strains carried an insertion mutation in the rpoS resulting in truncation of σS. Finding that one of the stress-sensitive strains carried an easily identifiable small polymorphism within a stress-response gene suggests that the other strains may also have small polymorphisms elsewhere in the genome, which likely impact regulation of stress or virulence associated genes in some manner.