Project description:The lack of MIRNA set and genome sequence of O. rufipogon (the ancestor of the cultivated rice) has limited to answer the role of MIRNA genes in rice domestication. In this study, a genome, three small RNA populations and a degradome of O.rufipogon were sequenced by Illumina platform and miRNA expression were investigated by miRNA chips. A de novo genome was assembled using ~55x coverage of raw sequencing data and a total of 387 MIRNAs were identified in the O. rufipogon genome based on ~5.2 million unique small RNA reads from three different tissues of O. rufipogon. Of these O. rufipogon MIRNAs, 259 were not found in the cultivated rice, suggesting loss of these MIRNAs in the cultivated rice. We also found that 48 MIRNAs were novel in the cultivated rice, suggesting that they were potential targets of domestication selection. Some miRNAs showed significant expression difference in the wild and cultivated rice, suggesting that expression of miRNA could also be a target of domestication, as demonstrated for the miR164 family. Our results illustrated MIRNA genes, like protein-coding genes, were significantly shaped during rice domestication and could be one of the driven forces contributed to rice domestication.
Project description:MicroRNA (miRNA)-guided target RNA expression is vital for a wide variety of biological processes in eukaryotes. The integration of miRNAs in diverse biological networks relies upon the confirmation of their RNA targets. Most miRNA targets in Arabidopsis are validated, but those in rice are yet to be characterized. To identify transcriptome-wide small RNA targets in rice, we generated 20-nt small cDNA library and obtained nearly 40 million reads. Sequence analysis yielded 11,552,007 unique reads that can be perfectly mapped to the rice genome. Sequence analysis not only found homologous targets for conserved miRNAs but also many novel targets. Besides miRNA atregts, the rice degradome contained fragments derived from MIRNA precursors. A closer inspection of these fragments revealed a unique pattern distinct from siRNA producing loci. This attribute can serve as one of the ancillary criteria for separating miRNAs from siRNAs in plants. Keywords: high throughout sequencing of rice degradome Identify transcriptome-wide small RNA targets in rice
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.
Project description:In this study, we aim to present a global view of transcriptome dynamics in different rice cultivars (IR64, Nagina 22 and Pokkali) under control and stress conditions. More than 50 million high quality reads were obtained for each tissue sample using Illumina platform. Reference-based assembly was performed for each rice cultivar. The transcriptome dynamics was studied by differential gene expression analyses between stress treatment and control sample. We collected seedlings of three rice cultivars subjected to control (kept in water), desiccation (transferred on folds of tissue paper) and salinity (transferred to beaker containing 200 mM NaCl solution) treatments. Total RNA isolated from these tissue samples was subjected to Illumina sequencing. The sequence data was further filtered using NGS QC Toolkit to obtain high-quality reads. The filtered reads were mapped to Japonica reference genome using Tophat software. Cufflinks was used for reference-based assembly and differential gene expression was studied using cuffdiff software. The differentially expressed genes during various abiotic stress conditions were identified.
Project description:A cDNA library was constructed by Novogene (CA, USA) using a Small RNA Sample Pre Kit, and Illumina sequencing was conducted according to company workflow, using 20 million reads. Raw data were filtered for quality as determined by reads with a quality score > 5, reads containing N < 10%, no 5' primer contaminants, and reads with a 3' primer and insert tag. The 3' primer sequence was trimmed and reads with a poly A/T/G/C were removed
Project description:In this study, we sequenced small RNA content from three different rice cultivars employing Illumina technology. More than 15 million reads were generated using Illumina high-throughput sequencing platform. After pre-processing, distinct small RNA sequences were identified for each rice cultivars. We collected seedlings of different rice cultivars and total RNA isolated was subjected to Illumina sequencing. The sequenced data was further filtered using NGS QC Toolkit to obtain high-quality reads. The filtered reads were pre-processed using modified perl script provided in the miRTools software. After quality control, the identical reads were collapsed into a unique read and read count for each sequence was recorded. All the filtered unique reads from each sample were mapped on the rice genome to find their location.
Project description:Purpose: The goals of this study is to compare NGS-derived inflorescence transcriptome profiling (RNA-seq) between wild type and transgenic rice line #14 silenced for endogenous OsbZIP47 gene through RNA interference Methods: mRNA profiles of tissue pool from 0.1-0.5 cm inflorscences of wild-type (WT) and osbzip47dsRNAi transgenic line #14 were generated by sequencing, in duplicate, using Illumina HiSeq. The sequence reads that passed quality filters were analyzed at the transcript level with STAR2 aligner followed by featureCounts and edgeR Results: we mapped about 30 million sequence reads per sample to the rice genome (RAP Database) and identified 29532 expressed genes
Project description:The lack of MIRNA set and genome sequence of O. rufipogon (the ancestor of the cultivated rice) has limited to answer the role of MIRNA genes in rice domestication.In this study, a genome, three small RNA populations and a degradome of O.rufipogon were sequenced by Illumina platform and miRNA expression were investigated by miRNA chips. A de novo genome was assembled using ~55x coverage of raw sequencing data and a total of 387 MIRNAs were identified in the O. rufipogon genome based on ~5.2 million unique small RNA reads from three different tissues of O. rufipogon. Of these O. rufipogon MIRNAs, 259 were not found in the cultivated rice, suggesting loss of these MIRNAs in the cultivated rice. We also found that 48 MIRNAs were novel in the cultivated rice, suggesting that they were potential targets of domestication selection. Some miRNAs showed significant expression difference in the wild and cultivated rice, suggesting that expression of miRNA could also be a target of domestication, as demonstrated for the miR164 family. Our results illustrated MIRNA genes, like protein-coding genes, were significantly shaped during rice domestication and could be one of the driven forces contributed to rice domestication.
Project description:Purpose: Next-generation sequencing (NGS) has been utilized for systems-based analysis of rice plants. The goals of this study were to compare the transcriptome between non-transgenic (NT) control and OsTZF8 overexpressing transgenic plants. Methods: Total RNAs were extracted from the whole plants of OsTZF8 overexpressing plants (T4 generation, line number #20) and non-transgenic (NT) plant using RNeasy plant mini kit (Qiagen, Germany) according to the manufacturer’s instruction. cDNA libraries were prepared from total RNAs using TruSeq RNA sample Prep kit (v2) (Macrogen, Korea). Two biological replicates were analyzed by RNA-sequencing analysis. Single-end sequences were obtained using IRGSP (v 1.0) and raw sequence reads were trimmed to remove adaptor sequence, and those with a quality lower than Q20 were removed using the Trimmomatic 0.32 software (Bolger et al., 2014). To map the reads to reference genome, all reads were assembled with annotated genes from the Rap-DB database [http://rapdb.dna.affrc.go.jp; IRGSP (v 1.0)] using TopHat software (https://ccb.jhu.edu/software/tophat/index.shtml). Conclusions: Our study has identified downstream candidate genes regulated by overexpression of OsTZF8.