Project description:Transcription profiling of skeletal muscles from young, old, and old calorie restricted C57BL/6NHsd mice to investigate age-related changes in the transcriptional profile
Project description:Resveratrol in high doses has been shown to extend lifespan in some studies in invertebrates and to prevent early mortality in mice fed a high-fat diet. We fed mice from middle age (14-months) to old age (30-months) either a control diet, a low dose of resveratrol (4.9 mg kg-1 day-1), or a calorie restricted (CR) diet and examined genome-wide transcriptional profiles. We report a striking transcriptional overlap of CR and resveratrol in heart, skeletal muscle and brain. Both dietary interventions inhibit gene expression profiles associated with cardiac and skeletal muscle aging. Gene expression profiling suggests that both CR and resveratrol may retard some aspects of aging through alterations in chromatin structure and transcription. Resveratrol, at doses that can be readily achieved in humans, fulfills the definition of a dietary compound that mimics some aspects of CR. Experiment Overall Design: Heart, neocortex tissue, and gastrocnemius muscle was collected from young and old mice at 5 and 30 months of age, respectively; mice were subjected to either a calorie restricted diet or a control diet supplemented with resveratrol
Project description:In utero undernutrition is associated with obesity and insulin resistance, although its effect on skeletal muscle remains poorly defined. We report that, in mice, adult offspring from undernourished dams have decreased energy expenditure, decreased skeletal muscle mitochondrial content, and altered energetics in isolated mitochondria and permeabilized muscle fibers. Strikingly, when these mice are put on a 40% calorie restricted diet they lose half as much weight as calorie restricted controls. Our results reveal for the first time that in utero undernutrition alters metabolic physiology having a profound effect on skeletal muscle energetics and response to calorie restriction in adulthood. We have used a mouse model of low birth weight generated through 50% food restriction of mouse dams during the third week of gestation. We have studied in utero food restricted offspring and control offspring that were not food restricted in utero in both the ad libitum and calorie restricted states. Gene expression profiling was performed on tibialis anterior muscle from 8 mice per group, pooled in pairs.
Project description:In utero undernutrition is associated with obesity and insulin resistance, although its effect on skeletal muscle remains poorly defined. We report that, in mice, adult offspring from undernourished dams have decreased energy expenditure, decreased skeletal muscle mitochondrial content, and altered energetics in isolated mitochondria and permeabilized muscle fibers. Strikingly, when these mice are put on a 40% calorie restricted diet they lose half as much weight as calorie restricted controls. Our results reveal for the first time that in utero undernutrition alters metabolic physiology having a profound effect on skeletal muscle energetics and response to calorie restriction in adulthood.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)