Project description:In Saccharomyces cerevisiae, Sen1 is a 252-kDa, nuclear superfamily-1 RNA/DNA helicase that encoded by an essential gene SEN1 (Senataxin). It is an important component of the Nrd1p-Nab3p-Sen1p (NRD1) complex that regulates the transcriptional termination of most non-coding and some coding transcripts at RNA polymerase pause sites. Sen1 specifically interacts with Rnt1p (RNase III), an endoribonuclease, and with Rpb1p (Rpo21p), a subunit of RNA polymerase II, through its N-terminal domain (NTD), which is a critical element of the RNA-processing machinery. Moreover, mutations in the N-terminal tail of SETX, a human ortholog of yeast Senataxin (Sen1) reported in neurological disorders. In one of the earlier studies, we have reported that the loss of dispensable NTD in yeast Sen1 resulted in flocculation and slow growing phenotypes along with defective DNA damage repair mechanisms. So, we attempted to explore the molecular basis of functional impairment associated with the loss of Sen1 N-terminal domain through global oligonucleotide microarray analysis. Also, we investigated for functionally enriched pathways based on the altered basal level gene expression profiles upon NTD loss of Sen1. The microarray data were validated by quantitative real-time PCR wherever necessary.
Project description:Functional engagement of RNA polymerase II (Pol II) with eukaryotic chromosomes is a fundamental and highly regulated biological process. Here we present the first high-resolution map of Pol II occupancy across the entire yeast genome. We compared a wild-type strain with a strain bearing a substitution in the Sen1 helicase, which is a Pol II termination factor for non-coding RNA genes. The wildtype pattern of Pol II distribution provides unexpected insights into the mechanisms by which genes are repressed or silenced. Remarkably, a single amino acid substitution that compromises Sen1 function causes profound changes in Pol II distribution over both non-coding and protein-coding genes, establishing an important function of Sen1 in the regulation of transcription. Given the strong similarity of the yeast and human Sen1 proteins, our results suggest that progressive neurological disorders caused by substitutions in the human Sen1 homolog, Senataxin, may be due to misregulation of transcription. Keywords: transcription termination, attenuation, silencing, non-coding RNA, Pol II, ChIP-chip
Project description:We report here the transcriptome-wide distribution of yeast Rpb2, Sen1, Nrd1 and Nab3 binding sites. These data sets provide highresolution definition of non-poly(A) terminators, identify novel genes regulated by attenuation of nascent transcripts close to the promoter, and demonstrate the widespread occurrence of Nrd1-bound 3'-antisense transcripts on genes that are poorly expressed. In addition, we show that Sen1 does not cross-link to many expected ncRNAs but surprisingly binds to pre-mRNA transcripts suggesting a role in 3' end formation and/or termination.
Project description:We report here the transcriptome-wide distribution of yeast Rpb2, Sen1, Nrd1 and Nab3 binding sites. These data sets provide highresolution definition of non-poly(A) terminators, identify novel genes regulated by attenuation of nascent transcripts close to the promoter, and demonstrate the widespread occurrence of Nrd1-bound 3'-antisense transcripts on genes that are poorly expressed. In addition, we show that Sen1 does not cross-link to many expected ncRNAs but surprisingly binds to pre-mRNA transcripts suggesting a role in 3' end formation and/or termination. Six samples by adaptation of PAR-ClIP procedure
Project description:Pervasive transcription is a widespread phenomenon leading to the production of a plethora of non-coding RNAs (ncRNAs) without apparent function. Pervasive transcription poses a risk that needs to be controlled to prevent the perturbation of gene expression. In yeast, the highly conserved helicase Sen1 restricts pervasive transcription by inducing termination of non-coding transcription. However, the mechanisms underlying the specific function of Sen1 at ncRNAs are poorly understood. Here we identify a motif in an intrinsically disordered region of Sen1 that mimics the phosphorylated carboxy terminal domain (CTD) of RNA polymerase II and characterize structurally its recognition by the CTD-interacting domain of Nrd1, an RNA-binding protein that binds specific sequences in ncRNAs. In addition, we show that Sen1-dependent termination strictly requires the recognition of the Ser5-phosphorylated form of the CTD by the N-terminal domain of Sen1. Furthermore, we find that the N-terminal and the C-terminal domains of Sen1 can mediate intra-molecular interactions. Our results shed light onto the network of protein-protein interactions that control termination of non-coding transcription by Sen1.
Project description:Pervasive transcription is a widespread phenomenon leading to the production of a plethora of non-coding RNAs (ncRNAs) without apparent function. Pervasive transcription poses a risk that needs to be controlled to prevent the perturbation of gene expression. In yeast, the highly conserved helicase Sen1 restricts pervasive transcription by inducing termination of non-coding transcription. However, the mechanisms underlying the specific function of Sen1 at ncRNAs are poorly understood. Here we identify a motif in an intrinsically disordered region of Sen1 that mimics the phosphorylated carboxy terminal domain (CTD) of RNA polymerase II and characterize structurally its recognition by the CTD-interacting domain of Nrd1, an RNA-binding protein that binds specific sequences in ncRNAs. In addition, we show that Sen1-dependent termination strictly requires the recognition of the Ser5-phosphorylated form of the CTD by the N-terminal domain of Sen1. Furthermore, we find that the N-terminal and the C-terminal domains of Sen1 can mediate intra-molecular interactions. Our results shed light onto the network of protein-protein interactions that control termination of non-coding transcription by Sen1.
Project description:Pervasive transcription is a widespread phenomenon leading to the production of a plethora of non-coding RNAs (ncRNAs) without apparent function. Pervasive transcription poses a risk that needs to be controlled to prevent the perturbation of gene expression. In yeast, the highly conserved helicase Sen1 restricts pervasive transcription by inducing termination of non-coding transcription. However, the mechanisms underlying the specific function of Sen1 at ncRNAs are poorly understood. Here we identify a motif in an intrinsically disordered region of Sen1 that mimics the phosphorylated carboxy terminal domain (CTD) of RNA polymerase II and characterize structurally its recognition by the CTD-interacting domain of Nrd1, an RNA-binding protein that binds specific sequences in ncRNAs. In addition, we show that Sen1-dependent termination strictly requires the recognition of the Ser5-phosphorylated form of the CTD by the N-terminal domain of Sen1. Furthermore, we find that the N-terminal and the C-terminal domains of Sen1 can mediate intra-molecular interactions. Our results shed light onto the network of protein-protein interactions that control termination of non-coding transcription by Sen1.