Project description:Several environmental bacteria encode plastic-degrading enzymes, a potential evolutionary response to the rapid introduction of plastic across global ecosystems. Given the widespread use of plastic in healthcare, we hypothesised that clinical bacterial isolates may also degrade plastic, rendering plastic-containing medical devices susceptible to degradation and failure and potentially offering these pathogens a carbon source that could be used to persist in the hospital-built environment. Here, we mined the genomes of prevalent pathogens and identified several enzymes in different pathogens with homology to known plastic-degrading enzymes. Synthesising and expressing a potential plastic-degrading enzyme derived from a Pseudomonas aeruginosa wound isolate in a heterologous host, we were able to demonstrate potent plastic degrading activity. We subsequently found that the original P. aeruginosa clinical isolate could reduce the weight of a medically relevant plastic, polycaprolactone (PCL), by 78% in 7 days, and critically could use it as a sole carbon source to grow. We uncovered a direct link to virulence, demonstrating that encoding a plastic degrading enzyme can significantly enhance biofilm formation and pathogenicity in vivo. We also demonstrate that this augmented biofilm phenotype is conserved in another P. aeruginosa PCL-degrading clinical isolate we identified in a screening. We reveal that the mechanism underpinning this enhanced biofilm formation is the incorporation of the plastic breakdown products into the extracellular matrix, leading to enhanced biofilm levels. The level of PCL degradation we show by a clinical isolate and its ability to promote a key virulence and persistence determinant such as biofilm formation indicates that the integrity of any PCL containing medical device, such as sutures or implants, and the condition of patients receiving such devices could be severely compromised by pathogens with this capacity. Given the central role of plastic in healthcare, this should be considered in the future of medical interventions and practice and hospital designs implementing this material
Project description:Restriction-modification (R-M) systems protect against phage infection by detecting and degrading invading foreign DNA. However, like many prokaryotic anti-phage defenses, R-M systems pose a significant risk of auto-immunity, exacerbated by the presence of hundreds to thousands of potential cleavage sites in the bacterial genome. Pseudomonas aeruginosa strains experience the temporary inactivation of restriction endonucleases (tiREN) upon growth at high temperatures, but the mechanisms and implications of this are unknown. Here, we report that P. aeruginosa Type I restriction endonuclease (HsdR) is degraded, and the methyltransferase (HsdMS) is partially degraded, by two Lon-like proteases when replicating above 41 °C. This post-translational regulation prevents self-DNA targeting and leads to partial genomic hypomethylation, as demonstrated by SMRT sequencing and eTAM-seq. Interestingly, upon return to 37 ºC, restriction activity and full genomic methylation do not fully recover for up to 60 bacterial generations. Our findings demonstrate that Type I R-M is tightly regulated post-translationally with a long memory effect that ensures genomic stability and mitigates auto-toxicity.
Project description:Hfq is an RNA chaperone and an important post-transcriptional regulator in bacteria. Using chromatin immunoprecipitation together with DNA sequencing (ChIP-Seq), we show that Hfq associates with hundreds of different regions of the Pseudomonas aeruginosa chromosome. These associations are abolished when transcription is inhibited, indicating they reflect Hfq binding to transcripts during their synthesis. Analogous ChIP-Seq analyses with the post-transcriptional regulator Crc reveal that it associates with many of the same nascent transcripts as Hfq, an activity we show is Hfq dependent. Our findings indicate that Hfq binds many transcripts co-transcriptionally in P. aeruginosa, often in concert with Crc, and uncover direct regulatory targets of these proteins. They also highlight a general approach for studying the interactions of RNA-binding proteins with nascent transcripts in bacteria. The binding of post-transcriptional regulators to nascent mRNAs may represent a prevalent means of controlling translation in bacteria where transcription and translation are coupled.
Project description:ParA and ParB homologs are involved in accurate chromosome segregation in bacteria. ParBs participate in proper folding and initial separation of ori domains by binding to specific parS sites (palindromic centromere-like sequences), mainly localized close to oriC. Bioinformatic analyses identified 10 parS sequences in the Pseudomonas aeruginosa PAO1 genome. One parS from the parS1-parS4 cluster is required for ParB mediated chromosome segregation. To verify the binding of ParB to all known parSs in vivo as well as to identify additional ParB binding sites we performed chromation immunoprecipitation (ChIP) using polyclonal anti-ParB antibodies followed by high throughput sequencing. ChIP was performed with P. aeruginosa PAO1161 (WT) cells, PAO1161 pKB9 (ParB+++) cells with a slight, non-toxic ParB overproduction as well as with 3 strains containing parS modifications impairing ParB binding to these sites. The data confirmed ParB binding to all known parS sequences with the exception of parS5. Moreover, we identified more than a 1000 of new ParB-bound regions, majority of which contained a DNA motif corresponding to inner 7 nt from one arm of the parS palindrome. ParB interactions with these numerous sites could affect chromosome topology, compaction and gene expression classifying P. aeruginosa ParB as a Nucleoid Associated Protein (NAP).
Project description:Restriction-modification (R-M) systems protect against phage infection by detecting and degrading invading foreign DNA. However, like many prokaryotic anti-phage defenses, R-M systems pose a significant risk of auto-immunity, exacerbated by the presence of hundreds to thousands of potential cleavage sites in the bacterial genome. Pseudomonas aeruginosa strains experience the temporary inactivation of restriction endonucleases (tiREN) upon growth at high temperatures, but the mechanisms and implications of this are unknown. Here, we report that P. aeruginosa Type I restriction endonuclease (HsdR) is degraded, and the methyltransferase (HsdMS) is partially degraded, by two Lon-like proteases when replicating above 41 °C. This post-translational regulation prevents self-DNA targeting and leads to partial genomic hypomethylation, as demonstrated by SMRT sequencing and eTAM-seq. Interestingly, upon return to 37 ºC, restriction activity and full genomic methylation do not fully recover for up to 60 bacterial generations. Our findings demonstrate that Type I R-M is tightly regulated post-translationally with a long memory effect that ensures genomic stability and mitigates auto-toxicity.
Project description:We used the AHL-degrading enzyme AiiA-lactonase to interrogate the evolution of the LasR-dependent QS regulon of P. aeruginosa in conditions where QS is required to obtain carbon and energy, and show that populations of P. aeruginosa adaptively reduced the size of their QS regulon over ~1000 generations.
Project description:Bacteriophages (hereafter “phages”) are ubiquitous predators of bacteria in the natural world, but interest is growing in their development into antibacterial therapy as complement or replacement for antibiotics. However, bacteria have evolved a huge variety of anti-phage defense systems allowing them to resist phage lysis to a greater or lesser extent, and in pathogenic bacteria these inevitably impact phage therapy outcomes. In addition to dedicated phage defense systems, some aspects of the general stress response also impact phage susceptibility, but the details of this are not well known. In order to elucidate these factors in the opportunistic pathogen Pseudomonas aeruginosa, we used the laboratory-conditioned strain PAO1 as host for phage infection experiments as it is naturally poor in dedicated phage defense systems. Screening by transposon insertion sequencing indicated that the uncharacterized operon PA3040-PA3042 was potentially associated with resistance to lytic phages. However, we found that its primary role appeared to be in regulating biofilm formation. Its expression was highly growth-phase dependent and responsive to phage infection and cell envelope stress.