Project description:We have sequenced messenger RNA isolated from seedling tissue for 19 accessions of Arabidopsis thaliana (with biological replication). The 19 accessions for which RNA-Seq reads were collected have served as the founders for the MAGIC lines, a high-resolution recombinant inbred line mapping resource. RNA sequencing data was used to examine differential gene expression among the accessions.
Project description:Background: Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomics strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here we report on the coupling of high-throughput elemental profiling of shoot tissue from various Arabidopsis accessions with DNA microarray-based bulk segregant analysis (BSA) and reverse genetics, for the rapid identification of genes from wild populations of Arabidopsis that are involved in regulating how plants acquire and accumulate Na+ from the soil. Methodology/Principal Findings: Elemental profiling of shoot tissue from 12 different Arabidopsis accessions revealed that Ts-1 and Tsu-1 accumulate higher shoot levels of Na+ than Col-0 and other accessions. We identify AtHKT1, known to encode a Na+ transporter, as being the causal locus driving elevated shoot Na+ in both Ts-1 and Tsu-1. Furthermore, we establish that a deletion in a tandem repeat sequence ~5 kb upstream of AtHKT1 is responsible for the reduced root expression of AtHKT1 observed in these accessions. Reciprocal grafting experiments establish that this loss of AtHKT1 expression in roots is responsible for elevated shoot Na+. Interestingly, and in contrast to the hkt1-1 null mutant, under NaCl stress conditions this novel AtHKT1 allele not only does not confer NaCl sensitivity, but co-segregates with elevated NaCl tolerance. We also present all our elemental profiling data in a new open access ionomics database, the Purdue Ionomics Information Management System (PiiMS; www.purdue.edu/dp/ionomics). Conclusions/Significance: Using DNA microarray-based genotyping has allowed us to rapidly identify AtHKT1 as the causal locus driving the natural variation in shoot Na+ accumulation we observed in Ts-1 and Tsu-1, two coastal populations of Arabidopsis. Such an approach overcomes the limitations imposed by a lack of established genetic markers in most Arabidopsis accessions, and opens up a vast and tractable source of natural variation for the identification of gene function not only in ionomics but also in many other biological processes. Keywords: genomics hybridization bulk segregant analysis
Project description:Background:; Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomics strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here we report on the coupling of high-throughput elemental profiling of shoot tissue from various Arabidopsis accessions with DNA microarray-based bulk segregant analysis (BSA) and reverse genetics, for the rapid identification of genes from wild populations of Arabidopsis that are involved in regulating how plants acquire and accumulate Na+ from the soil. Methodology/Principal Findings:; Elemental profiling of shoot tissue from 12 different Arabidopsis accessions revealed that Ts-1 and Tsu-1 accumulate higher shoot levels of Na+ than Col-0 and other accessions. We identify AtHKT1, known to encode a Na+ transporter, as being the causal locus driving elevated shoot Na+ in both Ts-1 and Tsu-1. Furthermore, we establish that a deletion in a tandem repeat sequence ~5 kb upstream of AtHKT1 is responsible for the reduced root expression of AtHKT1 observed in these accessions. Reciprocal grafting experiments establish that this loss of AtHKT1 expression in roots is responsible for elevated shoot Na+. Interestingly, and in contrast to the hkt1-1 null mutant, under NaCl stress conditions this novel AtHKT1 allele not only does not confer NaCl sensitivity, but co-segregates with elevated NaCl tolerance. We also present all our elemental profiling data in a new open access ionomics database, the Purdue Ionomics Information Management System (PiiMS; www.purdue.edu/dp/ionomics). Conclusions/Significance:; Using DNA microarray-based genotyping has allowed us to rapidly identify AtHKT1 as the causal locus driving the natural variation in shoot Na+ accumulation we observed in Ts-1 and Tsu-1, two coastal populations of Arabidopsis. Such an approach overcomes the limitations imposed by a lack of established genetic markers in most Arabidopsis accessions, and opens up a vast and tractable source of natural variation for the identification of gene function not only in ionomics but also in many other biological processes. Experiment Overall Design: Hybridizations from two sets of Bulk Segregant analysis. F2 populations from col-0 crossed to two High Na accessions: Ts-1 and Tsu-1 were analyzed. This series contains the 3 hybs from each accession that were used to identify Single Feature Polymorphisms, the 3 hybs of Col-0 they were compared to, and 1 hyb for each pool from the BSA mapping(High Na pool, low Na Pool).
Project description:We have sequenced messenger RNA isolated from seedling tissue for 19 accessions of Arabidopsis thaliana (with biological replication). The 19 accessions for which RNA-Seq reads were collected have served as the founders for the MAGIC lines, a high-resolution recombinant inbred line mapping resource. RNA sequencing data was used to examine differential gene expression among the accessions. Examination of RNA expression in seedling tissue carried out using biological replicates.
Project description:We produced RNA-Seq reads from messenger RNA isolated from seedling, root, and floral bud tissue for 17 MAGIC founder accessions (inbred strains) of Arabidopsis thaliana (see Gan et al. 2011. Nature, 477:419-23 for a description of the MAGIC genetic mapping resource). The resulting RNA-Seq data provide a resource to assess tissue-specific expression across different accessions of A. thaliana. Note that comparable read data for accessions Col-0 and Can-0, which are also founders of the MAGIC lines, has previously been released under GEO series GSE30795 (Gan et al. 2011. Nature, 477:419-23).
Project description:We produced RNA-Seq reads from messenger RNA isolated from root tissue for the 19 MAGIC founder accessions (inbred strains) of Arabidopsis thaliana (see Gan et al. 2011. Nature 477:419-23 for a description of the MAGIC genetic mapping resource). The read data was generated with biological replication (two replicates). The resulting RNA-Seq data provide a resource to assess root gene expression across different accessions of A. thaliana. Comparable RNA-Seq read data for the MAGIC founder accessions for aerial seedling tissue has previously been released under GEO series GSE30720 (Gan et al. 2011. Nature, 477:419-23).
Project description:We produced RNA-Seq reads from messenger RNA isolated from aerial seedling tissue for 9 hybrids (F1s) generated by crossing in a pairwise manner 18 of the founding accessions (inbred strains) of the Multiparent Advanced Generation Inter-Cross (MAGIC) genetic mapping resource for Arabidopsis thaliana (see Gan et al. 2011. Nature, 477:419-23 for a description of the MAGIC genetic mapping resource). The resulting RNA-Seq data provides a resource to assess allele-specific gene expression between A. thaliana accessions.
Project description:a2e_heterosis - cgh_colvscvi_wg - Arabidopsis thaliana accessions (Col-0, C24 and Cvi) and their hybrid were used to investigate the dynamics of the epigenome after intraspecific hybridization between - Comparative genome hybridization between Arabidopsis thaliana accessions Col-0 and CVi.
Project description:a2e_heterosis - cgh_colvsc24_wg - Arabidopsis thaliana accessions (Col-0, C24 and Cvi) and their hybrid were used to investigate the dynamics of the epigenome after intraspecific hybridization between - Comparative genome hybridization between Arabidopsis thaliana accessions Col-0 and C24.